Appendix F

RADON CONTROL METHODS

SECTION AF101 SCOPE ·

AF101.1 General. This appendix contains requirements for new construction in jurisdictions where radon-resistant construction is required.

Inclusion of this appendix by jurisdictions shall be determined through the use of locally available data or determination of Zone 1 designation in Figure AP101.

AF101.2 Where Required. This appendix shall apply to all new 1.2 and 3 family dwelling except for homes of closed construction such as: manufactured homes, industrialized units or relocated homes. This appendix shall also apply to R3 residential occupancies as described in section 310 of the Ohio Building Code that use the requirements of the Residential Code of Ohio.

SECTION AF102 DEFINITIONS

AF102.1 General. For the purpose of these requirements, the terms used shall be defined as follows:

SUB-SLAB DEPRESSURIZATION SYSTEM (Passive). A system designed to achieve lower sub-slab air pressure relative to indoor air pressure by use of a vent pipe routed through the conditioned space of a building and connecting the sub-slab area with outdoor air, thereby relying on the convective flow of upward in the vent to draw air from beneath the slab.

SUB-SLAB DEPRESSURIZATION SYSTEM (Active). A system designed to achieve lower-sub-slab pressure relative to indoor air pressure by use of a fan-powered vent drawing air from beneath the slab.

DRAIN THE LOOP. A continuous length of drain tile of perforated pipe extending around all or part of the internal or external perimeter of a basement or crawispace footing.

RADON GAS. A naturally -occurring, chemically inert, radioactive gas that is not detectable by humans senses. As a gas, it can move readily through particles of soil and rock and can accumulate under the slabs and foundations of homes where it can easily enter into the living space through construction cracks and openings.

SOIL-GAS-RETARDER. A continuous membrane of 6-mil (0.15mm) polyethylene or other equivalent material used to retard the flow of soil gases into a building.

SUB-MEMBRANE DEPRESSURIZATION SYSTEM. A system designed to achieve lower-sub-membrane air pressure relative to crawl space air pressure by use of a vent drawing air from beneath the soil-gas-retarder membrane.

SECTION AF103 REQUIREMENTS

AF103.1 General. The following construction techniques are intended to resist radon entry and prepare the building for post construction radon mitigation, if necessary (see Figure AF102). These techniques are required in areas where designated by the jurisdiction.

AF103.2 Subfloor preparation. A layer of gaspermeable material shall be placed under all concrete slabs and other floor systems that directly contact the ground and are within the walls of the living spaces of the building, to facilitate future installation of a sub-slab depressurization system, if needed. The gas-permeable layer shall consist of one of the following:

- 4. A uniform layer of clean aggregate, a minimum of 4 inches (102 mm) thick. The aggregate shall consist of material that will pass through a 2-inch (51 mm) sieve and be retained by a 1/4 inch (6.4 mm) sieve.
- A uniform layer of sand (native or fill), a minimum of 4 inches (102 mm) thick, overlain by a layer of strips of geotextile drainage matting designed to allow the lateral flow of soil gases.
- Other materials, systems or floor designs with demonstrated capability to permit depressurization across the entire sub-floor area.

AF103.3 Soil-gas-retarder. A minimum 6-mil (0.15 mm) for 3-mil (0.075 mm) cross-laminated] polyethylene or equivalent flexible sheeting material shall be placed on top of the gas-permeable layer prior to casting the slab or placing the floor assembly to serve as a soil-gas-retarder by bridging any cracks that develop in the slab or floor assembly and to prevent concrete from entering the void spaces in the aggregate base material. The sheeting shall cover the entire floor area with separate sections of sheeting lapped at least 12 inches (305 mm). The sheeting shall fit closely around any pipe, wire or other penetrations of the material. All punctures or tears in the material shall be sealed or covered with additional sheeting.

AF103.4 Entry routes. Potential radon entry routes shall be closed in accordance with Sections AF103.4.1 through AF103.4.10.

AF103.4.9 Crawl space floors. Openings around all penetrations through floors above crawl spaces shall be caulked or otherwise filled to prevent air leakage.

AF103.4.10 Crawl space access. Access doors and other openings or penetrations between basements and adjoining crawl spaces shall be dosed, gaskefed or otherwise filled to prevent air leakage.

AP-103.5 Passive sub-membrane depressurization system. In buildings with crawl space foundations, the following components of a passive sub-membrane depressurization system shall be installed during construction.

Exception: Buildings in which an approved mechanical crawl space ventilation system or other equivalent system is installed.

AF103.5.1 Ventiliation. Crawl spaces shall be provided with vents to the exterior of the building. The minimum net area of ventilation openings shall comply with Section R408.1 of this code,

AF163.6.2. Soll-gas-retarder. The soil in crawl spaces shall be covered with a continuous layer of minimum 6-mil (0.15mm) polyethylene soil-gas-retarder. The ground cover shall be lapped a minimum of 12 inches ground cover shall be lapped a minimum of 12 inches (305 mm) at joints and shall extend to sil foundation walls enclosing the crawlapace area.

AF103.6.3 Vent pipe. A plumbing fee or other approved connection shall be inserted horizontally beneath from connected to a 3-ord-inch-inch-oismeist (Y6 mm or 102 mm) fitting with a vertical vent pipe shall pipe installed through the sheding. The vent pipe shall be extended up through the building floors, terminate at least 12 inches (305 mm) shove the roof in a location at least 10 feet (3048 mm) sway from any window opening into the conditioned spaces of the building that is less than 2 feet (610 mm) below the exhaust point, and 10 feet (3048 mm) from any window or other opinit, and 10 feet (3048 mm) from any window or other opinit, and 10 feet (3048 mm) from any window or other opinity in adjoining or adjacent buildings.

AF103.6 Passive sub-slab depressurization eyelem. In basement or slab-on-grade-buildings, fire following components of a passive sub-slab depressurization system shall be installed during construction.

Aff 03.6.1 Vent pipe. A minimum 3-inch diameier (76 mm) ABS, PVC or equivalent gas-iight pipe shall be embedded verifically into the sub-stab aggregate or other permeable matically into the sub-stab aggregate or other equivalent matinal be used to ensure that the pipe equivalent matinal be used to ensure that the pipe opening remains within the sub-slab permeable maticall. Alternatively the 3 inch (76 mm) pipe shall be inserted directly into an interior perimeter disin die loop or through a sealed sump cover where the sump is apposed to the sub-slab aggregate or connected to it

AFTESA. Floor openings. Openings around bettings around a stitutios, showers, water closets, pipes; whee or other floor objects that penetrate concrete slabs or other floor assembles shall be filled with a polyurethane caulk or equivalent sealant applied in accordance with the manufathms.

AFT03.4.2 Concrete joints. All control joints, isolation joints, construction joints and any other joints in concrete slabs or between slabs and foundation walls shall be cleared with a caulk or sealant. Gaps and joints shall be cleared of loose material and filled with polyuethane caulk or other elasiomeric sealant applied in accordance with the manufacturer's recommendations.

AF103.4.3 Condensate drains. Condensate drains to shall be trapped or routed incomprehensited pipe to

AF103.4.4 Sumps. Sump pits open to soll or serving as the formination point for sub-stab or extentor drain tills loops shall be covered with a gasketed or otherwise sealed lid. Sumps used as a suction point in a sub-stab depresentization system shall trave a lid designed to accommodate the vent pipe. Sumps used as a floor accommodate the vent pipe. Sumps used as a floor accommodate the vent pipe. Sumps used as a floor drain at a free part of the stable of the

AF103.4.5 Foundation waille. Hollow block masonny foundation walls shall be constructed with either a contract of source of continuous course of solid masonny, one course of masonny ground solid, or a solid concrete beam at or above finished ground aurace to prevent passage of air from the interior of the wall into the living space. Where a birck venear or other masonny ledge is installed, the course inmediately below that ledge shall be sealed. Joints, cracks or other openings around all penetrations of both exterior and interior surfaces of masonny block or of both exterior and interior surfaces around sulpenetrations of both exterior and interior surfaces of masonny block or walls delined with polymethane caulk or equivalent sealant.

AF102.4.6 Denapproofing. The exterior surfaces of portraine and measury block walls below the ground surface shall be dempproofed in accordance with Section R406 of this code.

AF-103.4.7 AIr-handling units. Air-fiandling units in crawl spaces shall be sealed to prevent air from being drawn into the unit.

Exception: Units with gasketed seams or units that are otherwise sealed by the manufacturer to prevent leakage.

AF103.4.8 Dwels. Ductwork passing through or beneath a slab sail be of seamless material unless the airhandling system is designed to maintain continuous positive pressure within such ducting. Joints in such ductwork shall be sealed to prevent leakage.

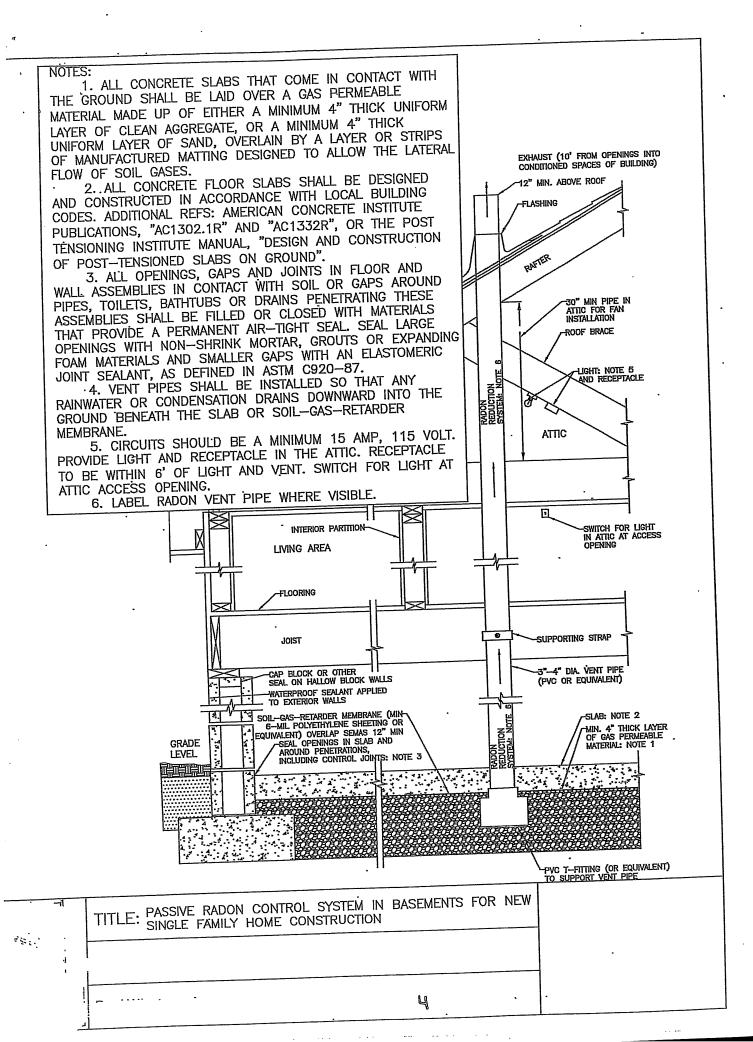
Ductwork located in crawl spaces shall have all seams and joints sealed by chosure systems in accordance with Section M1601.3.1.

The pipe shall be extended up through the building floors, terminate at least 12 inches (305 mm) above the surface of the roof in a location at least 10 feet (3048 mm) away from any window or other opening into the conditioned spaces of the building that is less than 2 feet (610 mm) below the exhaust point, and 10 feet (3048 mm) from any window or other opening in adjoining or adjacent buildings.

AF103.6.2 Multiple vent pipes. In buildings where interior footing or other barriers separate the sub-slab aggregate or other gas-permeable material., each area shall be fitted with an individual vent pipe. Vent pipes shall connect to a single vent that terminates above the roof or each individual vent pipe shall terminate separately above the roof.

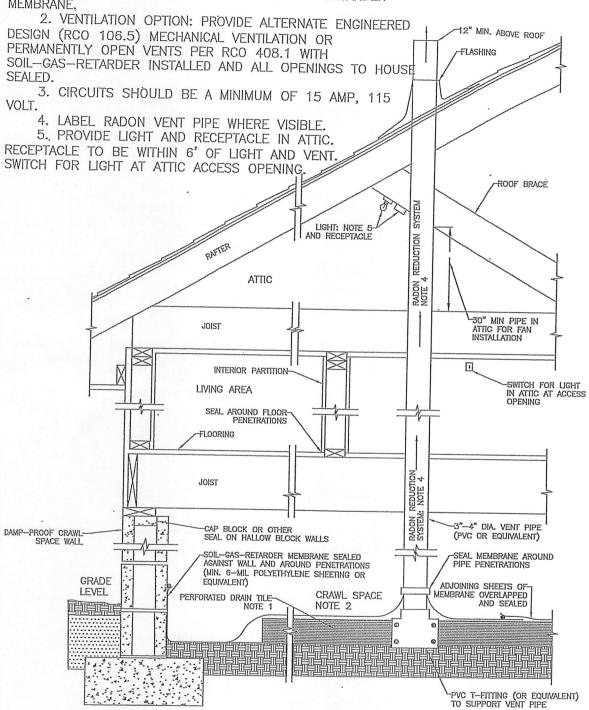
AF103.7 Vent pipe drainage. All components of the radon vent pipe system shall be installed to provide positive drainage to the ground beneath the slab or soilgas-retarder.

AF103.8 Vent pipe accessibility. Radon vent pipes shall be accessible for future fan installation through an attic or other area outside the habitable space.

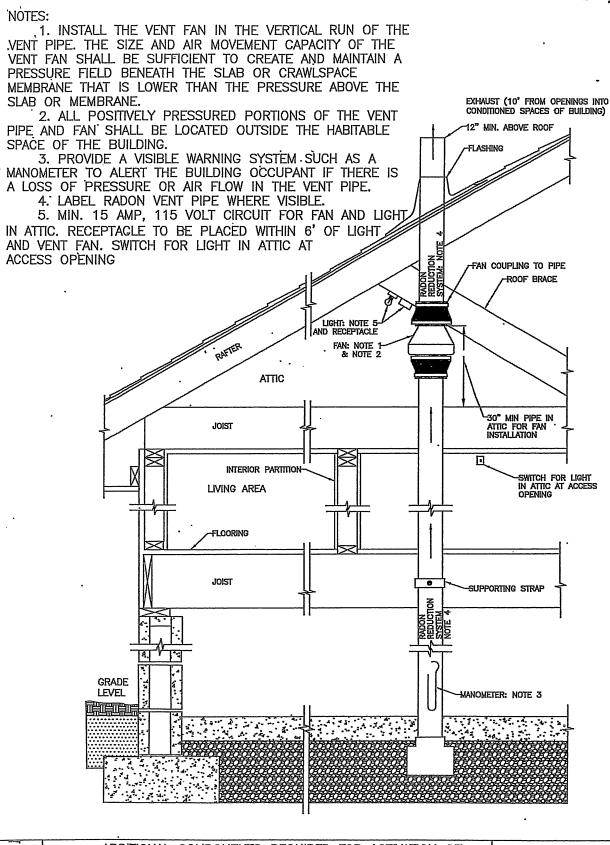

Exception: The radon vent pipe need not be accessible in an attic space where an approved roof-top electrical supply is provided for future use.

AF103.9 Vent pipe identification. All exposed and visible interior radon vent pipes shall be identified with at least one label on each floor and in accessible attics. The label shall read: "Radon Reduction System."

AF103.10 Combination foundations. Combination basement/crawl space or slab-on-grade/crawl space foundations shall have separate radon vent pipes installed in each type of foundation area. Each radon vent pipe shall terminate above the roof or shall be connected to a single vent that terminates above the roof.


AF103.11 Building depressurization. Joints in air ducts and plenums in unconditioned spaces shall meet the requirements of Section M1601. Thermal envelope air infiltration requirements shall comply with the energy conservation provisions in Chapter 11. Firestopping shall meet the requirements contained in Section R602.8.

AF103.12 Power source. To provide for future installation of an active sub-membrane or sub-slab depressurization system, an electrical circuit terminated in an approved box shall be installed during construction in the attic or other anticipated location of vent pipe fans. An electrical supply shall also be accessible in anticipated locations of system failure alarms.



1. INSTALL A LENGTH OF 3" OR. 4" DIAMETER PERFORATED DRAIN TILE HORIZONTALLY BENEATH THE SHEETING AND CONNECT TO THE "T" FITTING WITH THE VERTICAL STAND PIPE THROUGH THE SOIL—GAS—RETARDER MEMBRANE,

TITLE: PASSIVE RADON CONTROL SYSTEM IN CRAWL SPACE FOR NEW SINGLE FAMILY HOME CONSTRUCTION

ADDITIONAL COMPONENTS REQUIRED FOR ACTIVATION OF TITLE: PASSIVE BASEMENT OR CRAWL SPACE RADON CONTROL SYSTEM

6