Powell Grand

Preliminary Development Plan Application 05/20/2015

City of Powell, Ohio

Prepared For:

Prepared By:

CITY OF POWELL PLANNING AND ZONING COMMISSION (P&Z) PRELIMINARY DEVELOPMENT PLAN APPLICATION

ALL ITEMS ON THIS APPLICATION MUST BE COMPLETED.

Application Fee: \$400.00 + \$60.00 per acre

•••	or Margello Development Co. & Schotte Road, Columbus, OH 43235 / Two Easton				
	ent@gmail.com / bs@sregroup.com				
	Cell Phone No: 832-1667/406-3116	Fax No: <u>614-418-8920</u>			
Property Owner: Sawmill Seldom	Seen LLC				
Address/City/State/Zip: 4300 E Fift	th Ave, Columbus OH 43219				
Email Address:	pup.com				
Phone No: <u>614-449-4298</u>	Cell Phone No:	Fax No:			
Phone No: <u>614-449-4298</u> Cell Phone No: Fax No: Fax No: Architect/Designer for Applicant: Jim Houk/Rick Fay (site planing), OHM Advisors					
	rth St, #630, Columbus, OH 43215				
Email Address: Jim.Houk@ohm-advlsors.com / rick.fay@ohm-advisors.com					
Phone No: 614-418-0600	Cell Phone No:	Fax No: 614-418-0614			
	at Sawmill Parkway and Seldom Seen F				
Lot Number/Subdivision: 3414-341	7 Existing Use: PC/PI-Liberty Twp	Proposed Use: PCD Powell			
Reason for Administrative Review (c	ttach necessary documents):				

Checklist:

Preliminary Plan requirements set forth in Section <u>1143,11(c)</u>.

Provide any other information that may useful to the Planning and Zoning Commission or City Staff in the space below or attach additional pages.

□ 15 copies of all drawings, text, any other items, and application.

Provide a PDF copy of all plans, drawings, text, any other items, and application on a CD.

Attach the required fee - \$400.00 + \$60.00 per acre.

I agree to grant the City Staff, the Commission, Board or Council considering this application access to the property that is the subject of this application for the purposes of reviewing this application and posting public notice for this application.

ture of Applicant:	Date: 5-26-201
Office Use	Office Use
	AMT
	TYPE/DATE
	RECEPIT #
	PAYOR
Received	Payment

City of Powell · 47 Hall Street · Powell, Ohio 43065 · (614) 885-5380 · (614) 885-5339 fax · www.cityofpowell.us

THE POWELL GRAND: RESORT LIVING IN AN ACTIVE ADULT, CLASS "A" GATED COMMUNITY

Preliminary Development Plan May 26, 2015

Margello Development Co. 117 Lazelle Road Columbus, Ohio 43235 614-848-4004 margellodevelopment@gmail.com Schottenstein Real Estate Group 2 Easton Oval, Ste. 510 Columbus, Ohio 432119 614-418-8912 bs@sregroup.com

TABLE OF CONTENTS

APPLICATION FOR AMENDMENTS

Application

DEVELOPMENT PLAN TEXT

• PC – Planned Commercial District – Preliminary Development Plan Application

EXHIBITS

- Exhibit "A" Adjacent Property Owners
- Exhibit "B" Legal Description and Boundary Survey
- Exhibit "C" Vicinity Map
- Exhibit "D" Existing Conditions
- Exhibit "E" Preliminary Development Plan
- Exhibit "F" Grading Plan
- Exhibit "G" Landscape Plans and Site Features
- Exhibit "H" Utility Feasibility Letter(s) and Plans
- Exhibit "I" Architectural Elevations
- Exhibit "J" Tree Survey and Tree Preservation Plans
- Exhibit "K" Lighting Information
- Exhibit "L" Proposed Connection to City of Powell Park
- Exhibit "M" Proposed Easements, Deed Restrictions, Protective Covenants for use, control, maintenance of the land and improvements.
- Exhibit "O" Fiscal Analysis
- Exhibit "P" Traffic Analysis

APPLICATION FOR PLANNED COMMERCIAL DISTRICT

DEVELOPMENT TEXT

(1) Name, address and phone number of applicant.

Margello Development Co. Group 117 Lazelle Road Columbus, Ohio 43235 614-848-4004 margellodevelopment@gmail.com Schottenstein Real Estate

2 Easton Oval, Ste. 510 Columbus, Ohio 432119 614-418-8900 <u>bs@sregroup.com</u>

(2) Name, address, and phone number of registered surveyor, registered engineer and/or urban planner assisting in the preparation of the preliminary development plan.

Architect: Sullivan and Bruck

Planning Professionals:

James M. Houk, ASLA, AICP VICE PRESIDENT, PLANNING, DESIGN, DEVELOPMENT MANAGING DIRECTOR, OHIO

Rick Fay | RLA, LEED AP LANDSCAPE ARCHITECT

OHM Advisors | ARCHITECTS. ENGINEERS. PLANNERS. 580 N. Fourth Street, #630 Columbus, Ohio 43215

614.418.0600 Jim.Houk@ohm-advisors.com Rick.Fay@ohm-advisors.com

Civil Engineers:

Craig Bohning, EMH[&]T Patricia Brown, EMH&T

Engineers, Surveyors, Planners, Scientists

5500 New Albany Road, Columbus, OH 43054 v. 614.775.4396 | f. 614.775.4804 | pbrown@emht.com; cbohning@emht.com

(3) A list containing the names and mailing addresses of all owners of property contiguous to, directly across the street from and within 250 feet of the property in question.

See Exhibit A for adjacent property owners.

(4) Legal description of the property.

See Exhibit B for legal description.

(5) A description of present use(s) on and off the land.

The property is currently vacant and undeveloped with some agricultural use. The property is zoned in Liberty Township as Planned Commercial and Planned Industrial. These districts were established with a development plan named Seldom Seen Acres. The original development scheme included a mix of retail and commercial uses (including the possibility of a big box retailer) and Planned Industrial District uses, such as a self-storage facility. There is an existing lattice tower type of cellular tower at the southwest corner of the site.

(6) Draft of a proposed Ordinance, prepared with the advice and counsel of the Director Law, establishing this specific Development Plan as an additional effective zoning control over the land in question, consistent with the continuing authorities of the current Planned District zoning in these areas provided for elsewhere in this Zoning Ordinance.

Will be submitted by City of Powell.

(7) A vicinity map at a scale approved by the Zoning Inspector showing all property lines, existing streets and alleys, approved future streets and land uses on adjacent Planned District areas, transportation and land use elements of the Municipality's adopted Comprehensive Plan, current zoning classifications and boundaries, and current land uses on the site of the proposed Planned District development and in the surrounding areas to the physical extent deemed necessary by the Zoning Inspector, but no less than 250 feet beyond the limits of the proposed Planned District Development Plan.

See Exhibit C for Vicinity Map.

(8) A preliminary development plan at a scale approved by the Zoning Administrator illustrating:

See Exhibit E for Preliminary Development Plan.

A. The property line definition and dimensions of the perimeter of the site;

See Exhibit B for Boundary Survey.

B. Right-of-ways and paving widths of all existing, currently platted, and previously approved Planned District streets and alleys adjacent to, on, or abutting the site;

See Exhibit B for Boundary Survey, Exhibit D for Existing Conditions, and Exhibit E for Preliminary Development Plan.

C. The area of the site and its subareas in acres;

The site is 39.1+/- acres. There are five subareas, including:

- Subarea A Four, 30 Unit, Three-Story Buildings, 5.237 acres.
- Subarea B Fifteen, 4 Unit Ranch Buildings, 10.078 acres.
- Subarea C Sixteen, 8 Unit, Two-Story Townhome Buildings, 14.181 acres.
- Subarea D-1 1.349 acres including open space and a dog park serving the residential subareas.
- Subarea D-2 2.069 acres including Mail/Utility facilities, Clubhouse, Patio/Fire Lounge, Pool, Putting Green and Community Garden serving the residential subareas.
- Subarea E, 6.106 2 Commercial lots of +/-2.3 and +/-2.7 acres respectively, and a proposed dedicated right-of-way +/- 1.2 acres.

D. The topography of the site and abutting areas at no more than five (5) foot contour intervals;

See Exhibit D for Existing Conditions, and Exhibit F for Grading Plan.

E. Existing surface drainage ways and surface sheet flow patterns;

See Exhibit D for Existing Conditions, Exhibit F for Grading Plan, and Exhibit H for Utility Feasibility.

F. Flood plain areas, ravine-bottom areas, and areas of ground slope in excess of six (6) percent;

None on site.

G. Existing vegetation on the site with the specific tree spots for all trees six (6) inches in diameter or greater, measured twenty-four (24) inches from the ground;

See Exhibits G and J for landscaping and tree preservation plans.

H. Existing easements on the site with notations as to their type, extent, and nature;

See Exhibit B for Survey, Exhibit D for Existing Conditions, Exhibit E for Preliminary Development Plan, and Exhibit H for Utility Feasibility.

 The location and dimensions of existing utilities on and adjacent to the site, including the nearest sanitary sewer, with manhole invert elevations;

See Exhibit H for Utility Feasibility.

J. Calculation of the maximum residential units permitted on the site under the terms of the Zoning Ordinance, including delineation of the sub districts of the site upon which these calculations have been made;

Subareas are delineated as follows:

- Subarea A: 5.237 acres
 - Units provided: 120 units
- Subarea B: 10.078 acres
 Onits provided: 60 units
- Subarea C: 14.181 acres
- Units provided: 128 units
- Subarea D-1: 1.349 acres • Units provided: 0 units
- Subarea D-2: 2.069 acres

 Units provided: 0 units.
- Subarea E: 6.106 acres
 - Units provided: 0 units

Under 1143.09 (c)(5) A – As this site has immediate access to Sawmill Parkway via Sawmill Drive, the maximum number of allowable multifamily units is equal to the acreage in the planned district tract times two and one-half. (39.1 acres x 2.5 = 97.5 units) A divergence is therefore necessary under this section of the code to allow the proposed unit count and is so requested.

Under 1143.09 (c)(5) B – The maximum number of multi-family dwelling units on any single acre shall not exceed twelve (12) units to the acre. This provision is requested for divergence for residential subareas A, in which in some cases this maximum is exceeded.

Under 1143.09 (c)(10) A – As new residential units are planned as part of a PC district, the residential subareas in this PC district shall be designated Planned Residential and shall meet all requirements for density and physical arrangements except where divergences are requested.

Section 1143.09 (c) (4) A

- Open space required (20% of 32.99 ac.): 6.6 ac.
- Open space provided: 10.6 ac. (32%)
- Open space shall be protected by deed restriction, and shall be owned and maintained by the developer . See exhibits E and M.

Section 1143.09 (c) (4) B

- A divergence is requested to reduce the required 5 acre, relatively flat grasses common area to 1.35 acres to be provided in Subarea D-1, and to permit the uses of Subareas D-1 and D-2 to serve as the recreational elements indicated in the zoning code.
 - The targeted empty nester audience of this site does not require the intensive active recreational space specified in the code section.
 - The site provides overall open space above the required minimum 20%.
 - Subareas D-1 and D-2 offer recreational uses in the form of a dog park, common lawn open spaces for passive recreation, pool and patios, putting green, and community garden. Additionally, Subarea C includes a gazebo that overlooks the pond, offering passive recreation opportunities.

 This site is located across Seldom Seen Road and the future city park.

Section 1143.09 (c) (4) D

- This property has been used for agriculture historically, therefore, no natural watercourses traverse the site within the property boundaries. The headwater for Bartholomew Run is located at the southeast corner of the project and will be the discharge point for the site. A storm water basin will be located near this location to provide erosion and sediment control during construction and storm water quantity and quality control postconstruction. The two man-made watercourses crossing the site will be filled and piped as part of the development process.
- Slopes of 6% or more are associated with the watercourses reference above, drainage ditches, or by stockpiles related to prior construction activities on the site, and the existing screen mound along the south property line.

Section 1143.13

Under 1143.13 PR-Planned Residence District – Under gross density limits for other than single-family or two family housing, the site does not exceed the gross density limit specified of "not to exceed 9 dwelling units per gross acre." The site comes in at 8.12 gross density when density is calculated as to the entire developed property. There are a total of 308 dwelling units on the residential portion of the property, which totals 32.9 acres. This creates a net density of 9.36 units per acre on the residential portion. A divergence is requested above the 9 units per acre for a Planned Residential District. This is most justifiable because senior, active adult and empty nester residents have significantly less traffic impact based on travel patterns, very little impact on schools and use less utilities and services compared to other resident populations.

Total building footprint coverage is 21.8% of developable area (building footprints only) which requires a divergence above the 20% code maximum. Such a divergence is requested.

Total impervious surface coverage is 47.09% of the 33 acre residential site. (Code is 70% total lot coverage of all impervious surfaces.)

Divergences are requested from 1143.13(a) MAXIMUM BUILDING HEIGHT for the height of principal buildings and the two stories limit.

The height for the four 30 unit, three story buildings are an average height of 40 feet, 5 1/16 inches. This is approximately 5 feet, 5 inches greater than the code standard of 35 feet in height for residential districts and typical housing. Roof peak heights for the 30 unit buildings range up to 50 feet, 4 1/8 inches in some instances to allow for architectural elements. Such roof peaks, variations in roof heights and other architectural features including dormers, provide an attractive residential style building that refines and softens the current viewshed from the west, which is currently dominated by the existing fitness building and its significant height and commercial/industrial design. The average and peak building heights are further moderated by the building height at the roof truss bearing height,(gutter height), which is 30 feet, 6 inches, which is significantly lower than many homes and other three story buildings.

A divergence is requested for the NOTE provision of the 1143.13 providing no more than 4 dwelling units attached side-by-side for subarea A and C, and a total of no more than 8 units in any one structure for subarea A.

K. A preliminary plan for the first, or next, phase of site development illustrating;

1. New street centerlines, right-of-ways, and street classification types;

See Exhibit E for Preliminary Development Plan.

2. Names of existing and proposed streets;

See Exhibit D for Existing Conditions. All streets and access drives utilized shall be private.

3. Generalized lot and block layouts, indicating and illustrating property lines, minimum lot areas, minimum building setbacks and yards, location and extent of major off-street parking areas, etc.;

See Exhibit E for Preliminary Development Plan.

- 4. Subareas of the site to be developed, by land use type, housing types, and housing densities, including subarea statistics;
 - Subarea A

 5.237 acres

- o Four, 30 Unit, Three-Story Buildings; 120 units
- Net density: 22.9 du/ac.
- Subarea B,
 - o 10.078 acres.
 - Fifteen, 4 Unit Ranch Buildings; 60 units
 - Net density: 6.0 du/ ac
- Subarea C
 - o 14.181 acres.
 - Sixteen, 8 Unit, Two-Story Townhome Buildings; 128 units
 - Net density: 9.0 du/ac.
- Subarea D-1
 - o 1.349 acres
 - o 0 units
 - Net density: 0.0 du/ac
- Subarea D-2
 - o 2.069 acres
 - o 0 units
 - Net density: 0 du/ac
- Subarea E
 - o 6.106 acres
 - o 0 units
 - Net density: 0 du/ac
- 5. All proposed structures shall be located showing square footage, tenant or user types, and expected entranceways and service or loading areas;

See Exhibit E for Preliminary Development Plan and Exhibit I for Architectural details.

6. Common open areas, public lands, and natural scenic easements, including the area of each;

See Exhibit E for Preliminary Development Plan, and Exhibits L for Connection to City Park, and M for Proposed easements, deed restrictions, and protective covenants.

7. Proposed landscape treatment of the site;

See Landscape Plan attached as Exhibit G.

8. Proposed utility patterns and provisions including sanitary sewer, individual waste disposal systems, storm sewer, trash collection systems, outdoor lighting, and water supply,

including relevant easements and engineering feasibility studies or other evidences of reasonableness;

See Utility Service Letters and Utility Plan attached as Exhibit H. In addition, the applicant shall work with the City Engineering Department on site details and as part of final engineering plan review.

9. Provisions for accommodating surface drainage runoff;

See Exhibits E and Exhibit F for approximate location of storm water detention basins, and Exhibit M, draft easement agreements.

10. Proposed architectural design criteria;

See Exhibit I for architectural elevations.

11. Proposed pedestrian/jogging/bicycle pathways and equestrian paths, including locations, dimensions, landscape and construction, including relationships of such pathways to existing and proposed future pathways on surrounding property;

See exhibits E, H, and L for such pathways and connections to the future City Park. These proposals are subject to and shall be approved by the City Engineer as part of final engineering plan review.

12. Overall site development statistics comparing this plan for development with requirements of this Zoning Ordinance and with the comprehensive plan and indicating that all requirements of this Zoning Ordinance and the comprehensive plan have been met in this preliminary plan and will be met in final development.

The plan incorporates the direction given to the applicant by the planning and zoning director, as well as comments and suggestions by the Planning and Zoning Commission.

The upscale active adult, senior and empty nester housing proposed for the site is consistent with many comments expressed during the ongoing Community Plan update, based on the recognition that Powell has many upscale single-family homes but few upscale dwellings meeting the changing needs of active adults, empty nesters, and seniors. The size and scale of the building and the different housing options match the development intensity of the Sawmill Parkway corridor and the changing expectations and needs of the community. This site is no longer appropriate for single-family development based on neighboring development. Lower intensity of use in terms of people per units, very limited school use, less traffic impact, low utility use and the opportunity for housing that allows seniors and empty nesters to remain in the community are all positives of this plan. The upscale nature of the architecture and luxury of the amenities matches the quality of the Powell environment.

The Powell Zoning Code allows for multi-family residential, elderly households, senior housing facilities and congregate housing within the PC – Planned Commercial District. The maximum number of dwelling units in any Planned District development plan cannot exceed twelve (12) units per any one acre and no more than 4 dwelling units can be attached side-by-side, with no more than 8 per structure. Divergences are requested for both these provisions. The Planned Residential District allows for up to 9 du/acre and the proposed development has a net density of 9.36 du/acre.

Consideration is requested for greater density based on the less intense use of the land, traffic, schools, utilities, etc. from active adults, empty nesters and seniors, as well as the fact that some units are likely to be unoccupied in winter months due to travel and second dwelling arrangements for several residents.

Yard Setbacks

- Building and Parking setback from the railroad right-of-way shall be 40 feet.
- Building and parking setback from the south property line shall be 40 feet.
- Building setback from the west property line shared with the commercial outparcel shall be 25 feet.
- Parking setback from the wet property line shared with the commercial outparcel shall be 15 feet.
- Minimum distance between buildings shall be 30 feet.

Building Setbacks

- Front building setback from any right-of-way shall be 60 feet.
- Front parking setback from any right-of-way shall be 15 feet.

Parking and Circulation

• Subarea A shall provide parking at a minimum of 2.5 spaces per dwelling unit.

- Subarea B shall provide parking at a minimum of 3 spaces per dwelling unit.
- Subarea C shall provide parking at a minimum of 3 spaces per dwelling unit.
- Parking spaces shall be a minimum 9 feet x 18 feet.
- Parking may be provided in the form of garage spaces, tandem spaces in garage driveways, surface parking spaces.
- A +/- 1.2 acre portion of Subarea E shall be a publicly dedicated 60' wide right-of-way to extend Bunker Lane to connect to Sawmill Parkway. The road and utilities shall be dedicated to the city for ownership and maintenance.
- Private streets and drive aisles shall be a minimum of 22 feet wide.
- An 8 feet wide asphalt bike path shall be provided as shown on the Preliminary Development plan. The bike path shall be built within the Sawmill Parkway, Bunker Lane, and Seldom Seen rights-of-way. The path will be built by the developer, and owned and maintained by the city.
- Off-site roadway improvements are to be determined based on the outcome of final engineering and in coordination with the City and County Engineering staff.
- A pedestrian connection is to be built between this site and the city park on the north side of Seldom Seen Road.

Lot Coverage – Building

- Maximum lot coverage by buildings for combined subareas A, B, C, D-1, and D-2 shall be 21.8%. This requires a divergence from code required maximum of 20% lot coverage.
- See Exhibit E Preliminary Development Plan.

Lot Coverage – Total

The code allows 70% total lot coverage (all impervious surfaces). The development plan depicts 47.09% total lot coverage of building, sidewalks and vehicle use area with the residential subareas.

Landscaping

- Landscaping shall be provided per code requirements.
- Along the east property line adjacent to the rail road, a 3-6 feet tall mound with buffer planting shall be provided.

- Subarea E, excluding the proposed dedicated right-of-way, shall provide a screen as specified by city code along any boundary shared with Subarea B and C.
- Along the south property line, an existing +/- 6 feet tall mound with evergreen trees spaced at +/- 1- feet to 15 feet on center shall be preserved. Existing evergreen trees installed as part of that buffer that are dead or dying shall be replaced. The evergreen tree planting shall be extended along the portion of the south property line adjacent to existing buildings, as shown on the landscape plan, except where restricted by utility installations. Existing trees south of the mound shall remain.

Fencing and Wall Enclosures

- At the site entrances to Subareas A, B, and D-2, decorative entry columns/walls/fences and/or gates shall be permitted, but not required, and shall be permitted a 0' setback from the Bunker Lane right-of-way.
 - Such features shall include ornamental landscaping in the effect of an entry feature.
 - Gates may be operable or not operable.
 - Access through operable gates shall meet the approval of the fire department.
 - Columns, walls, and/ or fences included in the design shall not exceed six feet in height.
 - Vehicle sight distance shall meet the approval of the city staff
 - Designs shall be provided with Final Development Plan.

Signage

- Subarea A shall be permitted one monument sign at the corner of Seldom Seen Road and Bunker Lane. Signage shall be permitted to meet code requirements for "non-residential" signage.
- Subarea E-1:
 - Signage shall be per non-residential code requirements.
 - A monument sign shall be permitted along Sawmill Drive frontage and a joint identification sign, with agreement of the property owners, to be shared by the tenant/ owner of Subarea E-1 and the tenant/ owner of the multifamily subareas.
- Subarea E-2:
 - Signage shall be per code requirements.

- A monument sign shall be permitted along Sawmill Parkway frontage and to be a joint identification sign, with agreement of the property owners, to be shared by the tenant/ owner of Subarea E-1 and the tenant/ owner of the multifamily subareas.
- This section shall not exclude from any subarea additional signage as normally permitted by city code.

Lighting

- Subareas A, B, C, and D-2 shall provide site lighting within vehicular use areas and common pedestrian spaces.
- Light fixtures shall not exceed 14 feet in height.
- Light fixtures shall be cut-off style.
- See exhibit K for lighting information.

Building Height

The height for the four 30 unit, three story buildings are an average height of 40 feet, 5 1/16 inches. This is approximately 5 feet, 5 inches greater than the code standard of 35 feet in height for residential districts and typical housing. Roof peak heights for the 30 unit buildings range up to 50 feet, 4 1/8 inches in some instances to allow for architectural elements. Such roof peaks, variations in roof heights and other architectural features including dormers, provide an attractive residential style building that refines and softens the current viewshed from the west, which is currently dominated by the existing fitness building and its significant height and commercial/industrial design. The average and peak building heights are further moderated by the building height at the roof truss bearing height, (gutter height), which is 30 feet, 6 inches, which is significantly lower than many homes and other three story buildings.

Minimum Unit Area

- One bedroom: 810 sq.ft.
- Two bedrooms: Four different two bedroom designs, ranging from 1,200 sq. ft. to 1,350 sq.ft.
- Three bedrooms: Several designs ranging from 1,585 sq. ft. to 1,800 sq.ft.
- L. Projected development schedule by subareas of the entire planned development site, and for the first, or next phase of development, including land uses, public areas, natural and scenic reserves, streets, building, utilities, and other facilities, indicating the relationship of the proposed development to existing and probably uses of surrounding areas during the development timetable.

The multifamily site will not be phased and construction completion will be anywhere from 18-24 months.

The commercial subareas E-1 and E-2 shall be permitted to be constructed as independent phases.

- M. An overall traffic scheme, illustrating points of access, parking areas, including the number of parking spaces and indicating visitor, employee and service traffic flow, illustrating calculated peak hour traffic use for residents and employees as well as deliveries and other transport and the effect of this traffic on the community traffic ways.
 - See Exhibit E for traffic circulation and parking for this site.
 - Subarea A shall be permitted minimum parking of 2.5 spaces per unit.
 - Minimum parking for Subareas B, C, D-1, and D-2 shall be 3 spaces per dwelling unit.
 - Parking for Subareas A, B, C, D-1, and D-2 shall be permitted to be located within any multifamily subarea.
 - Parking is required at 3 spaces for each unit or 924 spaces and approximately 1,031 spaces are provided.

N. If to be developed in phases, the entire site development shall be described in outline and diagrammatic plan form, and in a complementing detailed text in a manner calculated to assure City officials that Planned Development requirements and other requirements of this Zoning Ordinance shall be met in the detailed development of the phases to follow, and that the entire Planned Development area will meet all of the requirements of this Zoning Ordinance, such diagrams and descriptive texts being accepted with, and becoming a part of the extended zoning plan for the entire site.

Subareas shall be developed as described within this text and accompanying preliminary development plans. Any item not specified within these documents shall be governed by City of Powell Code of Ordinances.

(9) Evidences of the ability of the applicant to carry forth its plan by control of the land and the engineering feasibility of the plan, and that the applicant has sufficient control over the land and financing to initiate the proposed development plan phase within two (2) years.

The Applicant is in contract to purchase the property. The Applicant builder, Schottenstein Real Estate Group (SREG), is a builder, developer and operator of active adult, empty nester and senior housing in several states, including Florida, North Carolina and Ohio. SREG has three plus decades of experience in the residential housing market and development, and is a successful multi-state developer of similar luxury rental and fee simple projects. The Applicant developer, Margello Development Company has significant development and successful project experience in the Powell community, including retail, office and senior villages.

(10) Evidence of the applicant's ability to post a bond if the plan is approved assuring completion of public service facilities to be constructed within the project area by the developer.

The Applicants shall provide evidence that they have the ability to post a bond for the City of Powell Council prior to Final Development Plan approval.

(11) Verification by the owner of the property that all the information in the application is true and correct to the best of his knowledge.

The landowner and applicant have reviewed the included information in the Combined Preliminary Development and Final Development Plan submittal and believe it to be true and correct to the best of their knowledge. Landowner or Landowner's Representative

(12) A statement of the character and nature of the development including the cost range or rent levels for housing in residential development and the general types of business or industrial and commercial developments.

The "Powell Grand – Resort Living" is an active adult, Class A, gated community proposed as a Planned Commercial District zoning under Powell's Zoning Ordinance. The community will provide a comparable option in terms of aesthetics, amenities and architectural quality for many Powell residents wishing to downsize their current high-quality single-family home to a more active adult and/or senior living environment within Powell. Powell Grand will help facilitate "aging in place" for those Powell residents wishing to change housing options, without leaving the community that has been their home. There will be other residents, new to Powell, who will be attracted to this unique, incomparable central Ohio community.

The total site is made up of 39.1+/- acres. A proposed internal public road (+/-1.2 acres) will connect from Sawmill Parkway to the intersection of Sawmill Drive and Bunker Lane. The residential component includes 308 units of leased dwellings with three distinct building types and housing options, a clubhouse and related open spaces and site amenities on +/- 32.9 acres. Five acres of commercial property are planned on two lots near or adjacent to Sawmill Parkway.

Rents/Lease Rates for eight different dwelling units will range from the \$900's-\$1900's per month.

Amenities included with this plan are a bike path connection along Sawmill Parkway and the interior public streets leading to a pathway tunnel under Seldom Seen Road to the new Seldom Seen Park. A large club house in the east-central portion of the site, including a pool, fitness center, community gathering rooms, fire pit lounge area, community garden and golf putting green are available for use by the Powell Grand residents. The site will also include a gazebo overlooking the pond, and an enclosed dog-park. There will be a site office open 7 days a week, 24-hour emergency services, and onsite staffing to provide special, outstanding services for residents.

(13) A statement of the general impact the development will have on the infrastructure, municipality and schools including projected demographics, a traffic impact study and a fiscal impact analysis may be required by the Planning and Zoning Commission.

The proposed development has low impacts on traffic, utility usage and infrastructure in general terms, as compared to typical single-family homes and

most commercial zonings in the area. The travel and commuting patterns by active adults, empty nesters, and seniors are demonstrably lower than other commuters. Traffic study analysis is attached to application as Exhibit P. Approximately five to seven staff members (3 to 4 leasing and 2 to 3 maintenance) will work at the site during day time hours, with lesser staff levels at night. The proposed land use compares favorably to the current Township zonings that could create peak commuting and overall traffic in much higher volume and likely more average daily trips.

There is not expected to be a real impact on schools in terms of new students, but positive tax benefits are expected with the commercial property development and very few children to educate.

(14) A fee as established by ordinance.

The fee payment is included with this application.

In accordance with the requirements of the codified ordinance 1431.11(g), in approving a preliminary development plan, the Planning and Zoning Commission shall consider:

a) If the proposed development is consistent with the intent and requirements of this Zoning Ordinance;

The site will be zoned as Planned Commercial District (PC) upon its annexation into the city. The PC allows for residential uses, elderly households, elderly housing facilities, and such uses as congregate housing. As a planned district, the Planning and Zoning Commission can create specific regulations, approve uses and grant divergences to the code requirements provided they are in line with the scale and size of the community and are desirable land uses.

Summary of Divergences Requested:

1. Building Area Coverage The proposed building footprint area is approximately 21.8% (312,681.8 square feet) of the total land area and therefore a 1.8% divergence for lot coverage is requested with this planned district approval.

2. Under 1143.09 (c)(5) A – As this site has immediate access to Sawmill Parkway via Sawmill Drive, the maximum number of allowable multi-family units is equal to the acreage in the planned district tract times two and one-half. (39.1 acres x 2.5 = 97.5 units) A divergence is, therefore, necessary under this section of the code to allow the proposed unit count of 308 and is so requested.

3. Under 1143.09 (c)(5) B – The maximum number of multi-family dwelling units on any single acre shall not exceed twelve (12) units to the acre.

This provision is requested for divergence for residential subareas A, B and C, in which in some cases this maximum is exceeded.

4. Under 1143.09 (c)(10) A – As new residential units are planned as part of a PC district, the residential subareas in this PC district shall be designated Planned Residential and shall meet all requirements for density and physical arrangements.

Section 1143.09, (c), (4), B

- A divergence is requested to reduce the required 5 acre, relatively flat grasses common area to 1.35 acres to be provided in Subarea D-1, and to permit the uses of Subareas D-1 and D-2 to serve as the recreational elements indicated in the zoning code.
 - The targeted empty nester audience of this site does not require the intensive active recreational space specified in the code section.
 - The site provides overall open space above the required minimum 20%.
 - Subareas D-1 and D-2 offer recreational uses in the form of a dog park, common lawn open spaces for passive recreation, pool and patios, putting green, and community garden. Additionally, Subarea C included a gazebo that overlooks the pond offering passive recreation opportunities.
 - This site is located across Seldom Seen Road from the future city park.

5. Under 1143.13 PR-Planned Residence District – under gross density limits for other than single-family or two family housing, the site does not exceed the gross density limit specified of "not to exceed 9 dwelling units per gross acre" as the site comes in at 8.12 gross density when the entire property is used to calculate density. There are a total of 308 dwelling units on the residential portion of the property, which totals 32.9 acres. This creates a net density of 9.36 units per acre on the residential portion. Consideration is requested for a divergence above the 9 units per acre for a Planned Residential District because senior, active adult and empty nester residents have significantly less traffic impact based on travel patterns, very little impact on schools and use less utilities and services compared to other resident populations. 6. A divergence is requested for the NOTE provision of the 1143.13 providing no more than 4 dwelling units attached side-by-side for subareas A and C, and a total of no more than 8 units in any one structure for subarea A.

7. 1145.34 Fences, walls, shrubbery, and hedges in "residence" (r), "old powell residence" (opr), and "planned residence" (pr) districts, as well as in all residential portions of other planned districts:

A divergence is requested to permit the entry gates/ fences/ columns/ walls in front yard with a 0' setback.

- 8. 1151: Signage
 - Divergence to permit 3 multifamily signs, 2 on commercial property
 - Divergence to permit shared signs with commercial outparcels.

9. Height divergence – Divergences are requested from 1143.13(a) MAXIMUM BUILDING HEIGHT for the height of principal buildings and the two stories limit. The height for the four 30 unit, three story buildings are an average height of 40 feet, 5 1/16 inches. This is approximately 5 feet, 5 inches greater than the code standard of 35 feet in height for residential districts and typical housing. Roof peak heights for the 30 unit buildings range up to 50 feet, 4 1/8 inches in some instances to allow for architectural elements. Such roof peaks, variations in roof heights and other architectural features including dormers, provide an attractive residential style building that refines and softens the current viewshed from the west, which is currently dominated by the existing fitness building and its significant height and commercial/industrial design. The average and peak building heights are further moderated by the building height at the roof truss bearing height,(gutter height), which is 30 feet, 6 inches, which is significantly lower than many homes and other three story buildings.

b) The relationships between uses, and between uses and public facilities, streets, and pathways;

The proposed land uses, type, location and intensity are appropriate for the site and its surrounding area. The land uses proposed are similar in scale, size and use to the commercial and residential uses in proximity. The residential building designs fit the scale of the area and Powell's market expectations.

The plan provides a transition of uses and density by matching unit types with the existing Woods at Big Bear Farms condominiums on south border, and by transitioning to higher density to the north. The commercial lots fronting Sawmill Parkway and Sawmill Drive are consistent with existing commercial uses. The two and three story buildings are placed closest to the existing three story Urban Active facility bordering the northeast corner of the site, matching height and massing. The railroad tracks separate the site from all uses to the west.

A proposed tunnel pathway from the site to the future city park site connects with a bikepath system that ties the property into future bike pathways along Sawmill Parkway on the southern property border and to the east and west along Seldom Seen Road.

c) Adequacy of provisions for traffic and circulation, and the geometry and characteristics of street and pathway systems;

The proposal has adequate provisions for traffic and on-site circulation. Sawmill Parkway and Seldom Seen Road are capable of handling increased traffic as a result of the development. The interior circulation has been designed to allow for the flow of traffic throughout the entire site. There is also adequate parking on-site.

See Traffic Analysis, Exhibit P for details.

d) Adequacy of yard-spaces and uses at the periphery of the development;

Yard and open spaces are adequate for this type of multi-family living. Common areas make up most of the useable spaces with periphery spaces designed mainly to buffer the community from other uses and the railroad tracks.

e) Adequacy of open spaces and natural preserves and their relationship to land use areas and public access ways;

Green spaces on the site are more than adequate to meet code requirements. There is significantly more (32% and 10.5 acres) than the required 20% green

space and recreational areas, much of it programmed for specific uses and/or amenitized to fit the needs of residents.

f) The order, or phases, in which the development will occur and the land uses and quantities to be developed at each phase;

This development will likely be built in 2-3 phase(s), depending on market conditions and absorption, which is appropriate for the size and scale of this proposal. The multifamily sites will be built as one phase. The commercial site may be built as two separate phases.

g) Estimates of the time required to complete the development and its various phases;

This proposal can be developed within an appropriate time frame projected at a range of 18 to 24 months, but subject to economic and market conditions.

h) Improvements to be made by the Municipality, if any, and their cost;

The applicant is in discussions with the City regarding this item.

i) The community cost of providing public services to the development, and

This development will not add a considerable amount to the overall cost of public services provided to it.

j) Impacts of the development on surrounding or adjacent areas.

There will be minimal impacts upon the surrounding/adjacent areas near the site or the overall city. The site will generate enough taxes to cover any potential additional city expenses.

Section 1143.11(k) Recommendation by the Planning and Zoning Commission

THE FOLLOWING SHALL BE CONSIDERED IN APPROVING THE FINAL DEVELOPMENT PLAN:

(1) Can the development plan or its phase be initiated within two years and completed within five years?

Yes.

(2) Have the requirements of the Comprehensive Plan relative to the site been fulfilled?

Yes. This proposal fits with ongoing comments/requests documented during the current Powell Comprehensive Plan update process, where people site the need for higher-end senior and active adult housing. This plan meets that need because it provides Powell's long term residents new housing options to "age in place" in a luxury living environment that is consistent with the quality and amenity level of existing Powell residences. Residents can downsize while staying in their own community.

The ability to provide high quality housing for seniors, allowing independent, active and attractive living arrangements, is also a benefit to many existing single-family residents, whose older loved ones choose to live close to their families in a flexible lease situation. This allows for care-free travel and/or splitting time between other residences, while giving families the opportunity to strengthen generational and community ties.

Such an active adult and empty nester housing with access to Sawmill Parkway, and proximity to health-care services, commercial, other multi-family districts and retail uses also represents appropriate planning. Utility and peak traffic impacts are limited, with virtually zero school impact. However, the community benefits with receipt of additional real property taxes.

(3) Are the proposed streets suitable and adequate to carry anticipated traffic, and will increased densities generate traffic in such amounts to overload the street network outside the development plan area?

The proposed development has lower impacts on traffic, utility usage and infrastructure than the zoning approved previously in the Township. Sawmill Parkway and Seldom Seen Road traffic improvements are adequate to handle the increase in traffic, much of which will be generated off-peak. (See Traffic Analysis, Exhibit P in this regard) This is an example of a development that is sized based the existing infrastructure that is in place to handle it.

(4) Can the non-residential development be justified at the location and in the amounts proposed?

Yes. Commercial development is appropriately placed and is in keeping with the area.

(5) Are the housing densities warranted by the amenities and conditions incorporated in the development plan and in accordance with the planned district development requirements?

Yes, see the answer to number 2 above in this section and divergence explanation related to density. In addition, the development is highly amenitized and architecture is consistent with Powell's high quality design environment.

(6) Are the lands to be dedicated to public use of acceptable and usable size, shape, and location?

Upon approval, the City will cooperate with Developer to cause the Property to be replatted from the currently effective plat to permit the development of the Property generally in accordance with the Development Plan Concept. In connection therewith, the City will cooperate in vacating the existing public road designated "Revere Court" as well as the platted setbacks along Seldom Seen Road, it being the intention of the parties that setbacks will be conformed/addressed based on the outcome of this rezoning.

(7) Can the area surrounding the proposed development be planned and zoned in coordination with and in substantial compatibility with the proposed development?

Yes. The surrounding area is mostly commercial, retail, park or similar multifamily. Assisted living and health care services are also close to the vicinity and are consistent with this use.

(8) Are the existing and proposed utility services adequate for the population densities and uses proposed?

Yes

(9) Has adequate provision been made for the detention, retention, and channelization of surface drainage runoff?

Yes. See the attached plans and Exhibit M for storm water facilities and maintenance.

3059993.1 : 05737 00007

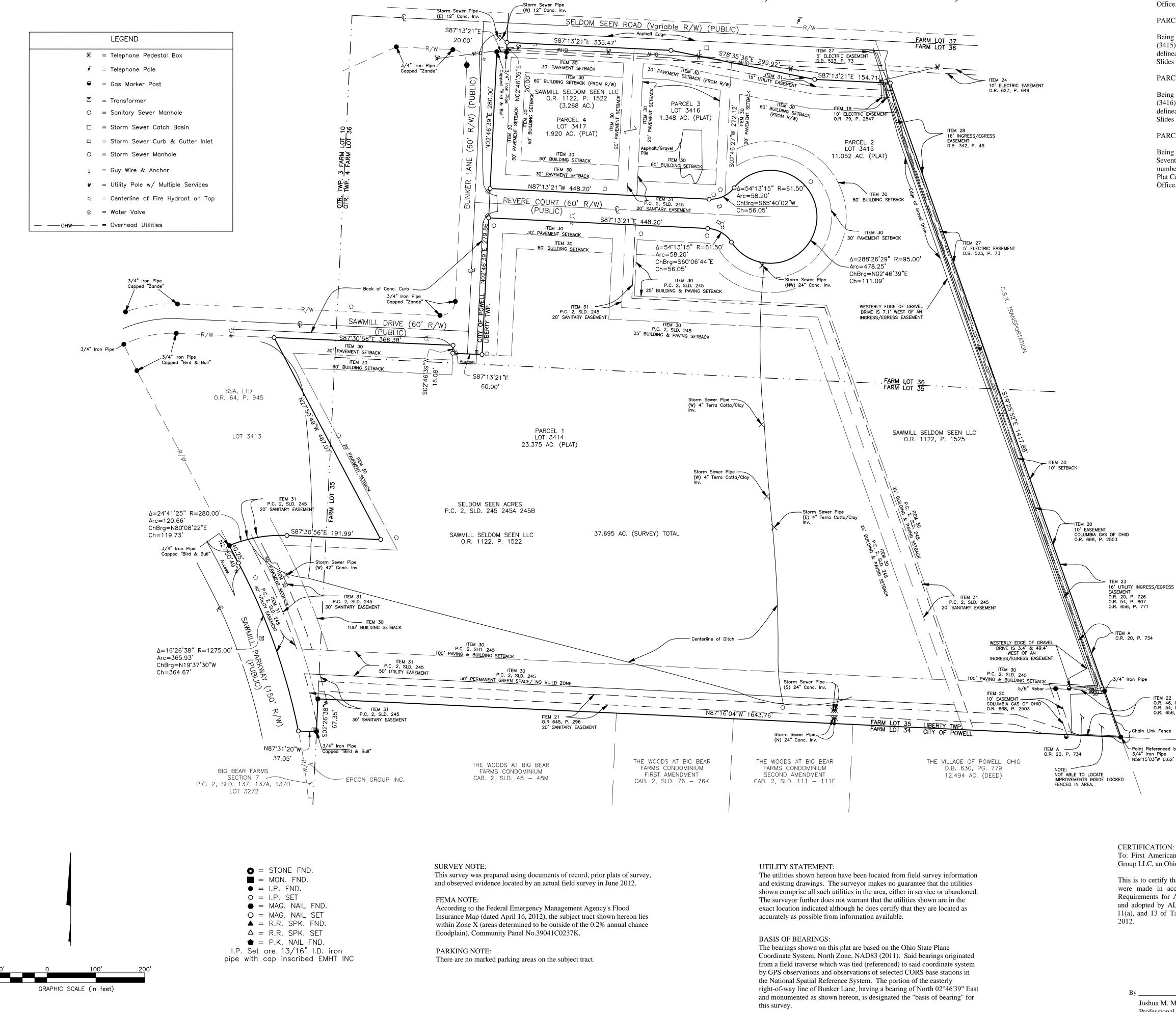
EXHIBIT

ADJACENT PARCEL OWNERS

Subject Parcels to be Annexed:

- #31942302002000
 9121 Sawmill Parkway
 Powell, OH 43065
 Sawmill Seldom Seen LLC
 4300 East Fifth Avenue
 Columbus, OH 43219
- 2. #31942302001000
 8957 Bunker Lane
 Powell, OH 43065
 Sawmill Seldom Seen LLC
 4300 East Fifth Avenue
 Columbus, OH 43219
- 3. #31942302001002
 3280 Revere Court
 Powell, OH 43065
 Sawmill Seldom Seen LLC
 4300 East Fifth Avenue
 Columbus, OH 43219
- 4. #31942302001003
 8882 Revere Court
 Powell, OH 43065
 Sawmill Seldom Seen LLC
 4300 East Fifth Avenue
 Columbus, OH 43219

Adjacent Parcels:


 #31942202051000 Seldom Seen Road Powell, OH 43065 City of Powell 47 Hall St Powell, OH 43065

- #31931401023000
 3474 Sawmill Drive
 Powell, OH 43065
 Realty Income Properties 24 LLC
 3474 Sawmill Drive
 Powell, OH 43065
- #31931401022001
 2.996 Acres, Lot 3413 Seldom Seen Acres Sawmill Parkway
 Powell, OH 43065
 SSA Ltd.
 Sawmill Parkway
 Powell, OH 43065
- 4. #31931401023001
 1.859 Acres, Lots 4497 Seldom Seen Acres Realty Income Properties 24 LLC Sawmill Road Powell, OH 43065
- #31942305003000
 425 Village Park Drive
 Powell, OH 43065
 Fernco Development Ltd.
 425 Village Park Drive
 Powell, OH 43065
- 6. #31942305002000
 489 Village Park Drive
 Powell, OH 43065
 LDH 2000 Family Limited Partnership
 c/o Countryside Construction
 P. O. Box 389
 Delaware, OH 43015
- 7. #31942601002001
 321 Bear Woods Drive
 Powell, OH 43065
 Village of Powell
 47 Hall Street
 Powell, OH 43065

- 8. #31942601002537
 340 Park Woods Lane
 Powell, OH 43065
 Paul A. Bischoff
 340 Park Woods Lane
 Powell, OH 43065
- 9. #31942601002554
 335 Bear Woods Drive
 Powell, OH 43065
 Continuing Partners Limited Partnership
 335 Bear Woods Drive
 Powell, OH 43065
- 10. #31942601002527 393 Park Woods Lane Powell, OH 43065 Julia Baranova Benet 393 Park Woods Lane Powell, OH 43065

2962602.1:05737 00007

ALTA/ACSM LAND TITLE SURVEY FARM LOT 10, QUARTER TOWNSHIP 3, TOWNSHIP 3, RANGE 19 FARM LOTS 35 AND 36 QUARTER TOWNSHIP 4, TOWNSHIP 3, RANGE 19 **UNITED STATES MILITARY LANDS** LIBERTY TOWNSHIP, DELAWARE COUNTY, OHIO

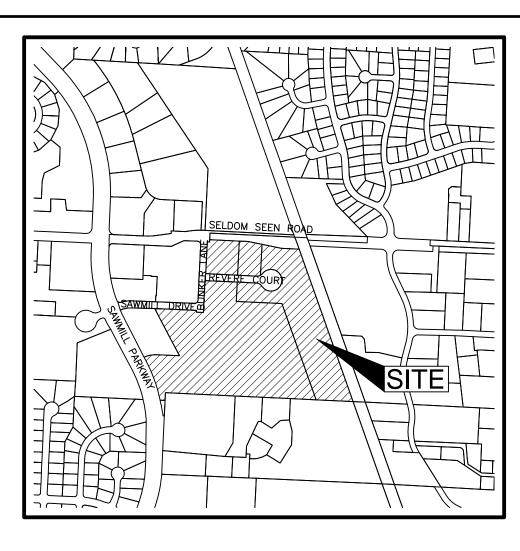
DESCRIPTION

Situated in the Township of Liberty, County of Delaware and the State of Ohio and bounded and described as follows:

PARCEL 1:

Being known as Lot Number Three Thousand Four Hundred Fourteen (3414) in SELDOM SEEN ACRES, as the same is numbered and delineated upon the recorded plat thereof, of record in Plat Cabinet 2, Slides 245, 245A-245B, Delaware County Recorder's Office.

PARCEL 2


Being known as Lot Number Three Thousand Four Hundred Fifteen (3415) in SELDOM SEEN ACRES, as the same is numbered and delineated upon the recorded plat thereof, of record in Plat Cabinet 2, Slides 245, 245A-245B, Delaware County Recorder's Office.

PARCEL 3:

Being known as Lot Number Three Thousand Four Hundred Sixteen (3416) in SELDOM SEEN ACRES, as the same is numbered and delineated upon the recorded plat thereof, of record in Plat Cabinet 2, Slides 245, 245A-245B, Delaware County Recorder's Office.

PARCEL 4:

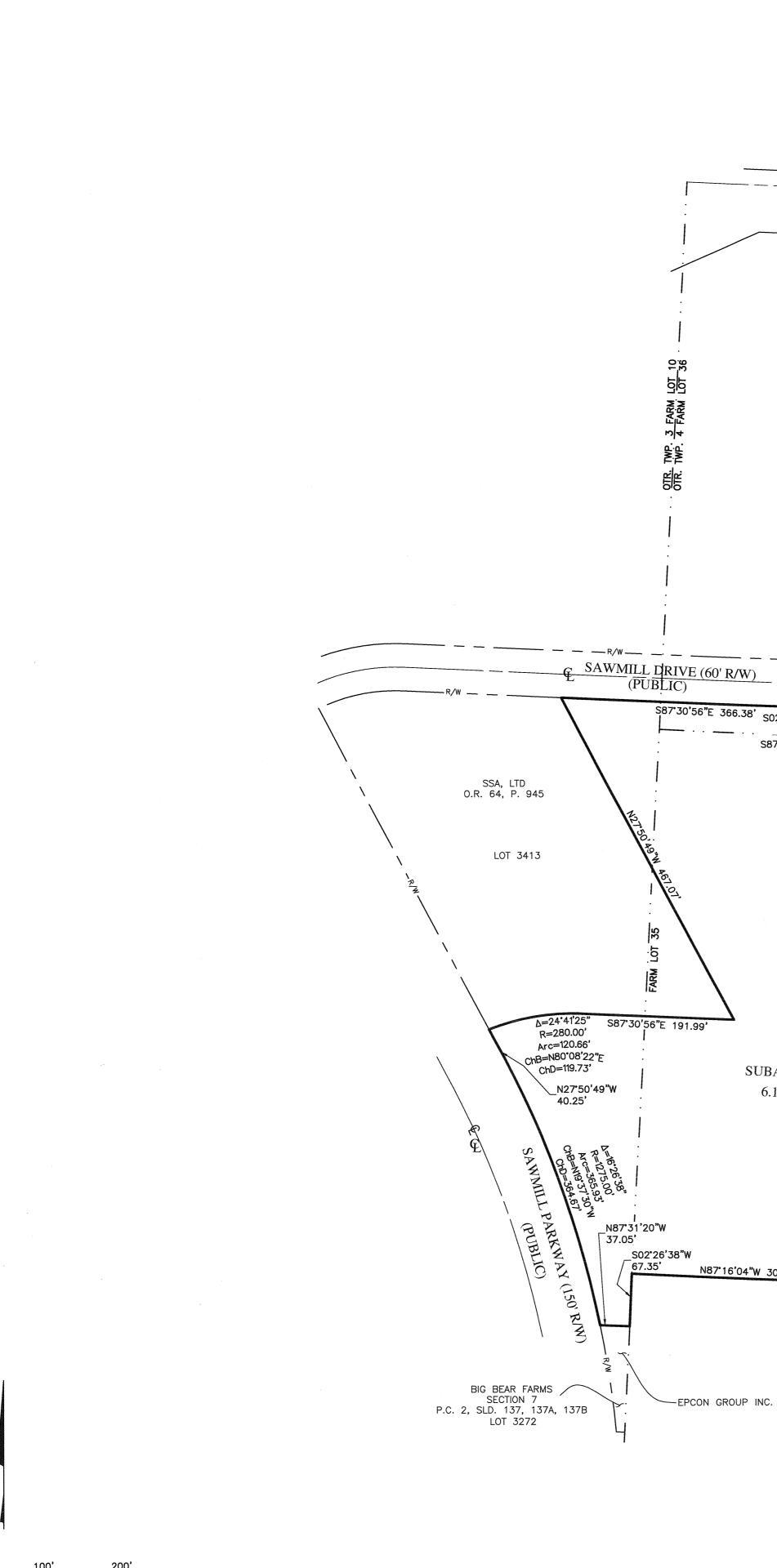
Being known as Lot Number Three Thousand Four Hundred Seventeen (3417) in SELDOM SEEN ACRES, as the same is numbered and delineated upon the recorded plat thereof, of record in Plat Cabinet 2, Slides 245, 245A-245B, Delaware County Recorder's Office.

LOCATION MAP AND BACKGROUND DRAWING NOT TO SCALE

Item 19 Easements appearing of record in Official Record Volume 52, page 257, Recorder's Office, Delawae County, Ohio. 10 ELECTRIC PASHMENT OF V. 79, R5, 2517 ISI (CATHE) ON THE SUBJECT TRACT AS SHOWN HEREON. 10 ELECTRIC E ASEMENT OF V. 525, RG, 77, RS LOCATED ON THE SUBJECT TAXCT AS SHOWN HEREON INFORMATION OF INTERSUBJECT TAXCT AS SHOWN HEREON, THE SUBJECT TRACT AS SHOWN HEREON. Item 21 Easement appearing of record in Official Record's Office, Delaware County, Ohio, SI LOCATED ON THE SUBJECT TRACT AS SHOWN HEREON. Item 22 Easement appearing of record in Official Record's Office, Delaware County, Ohio, SI LOCATED ON THE SUBJECT TRACT AS SHOWN HEREON. Item 24 Easement appearing of record in Official Record Volume 67, page 670, Recorder'S Office, Delaware Cou		30625 issue	Part II Items from Title Commitment Number ed by First American Title Insurance Company with a date of December 22, 2014 at 7:00 A.M. NOT SURVEY RELATED ITEMS.	Item 27	Easement of record in Deed Book 523, page 73, Recorder's Office, Delaware County, Ohio. 5' EASEMENT IS LOCATED ON THE SUBJECT TRACT AS SHOWN HEREON.
ON THE SUBJECT TRACT AS SHOWN Item 29 Easement of record in Deed Book 366, page 672, THE SUBJECT TRACT SUBJECT TRACT AS SHOWN Item 20 Statement appearing of record in Official Record Youne 508, page 503, Recorder's Office, Delaware County, Ohio, BUILDING SETBACK LINES TRACT AS SHOWN HEREON, THE SUBJECT TRACT SHOWN HEREON, THE SUBJECT TRACT SHOWN HEREON, THE SUBJECT TRACT SHOWN Item 31 Plated Building Setback Lines per recorded plat of sublivision of record in PHT SUBJECT TRACT AS SHOWN HEREON, THE SUBJECT TRACT AS SHOWN HEREON, THE SUBJECT TRACT SHOWN HEREON, THE SUBJECT TRACT SHOWN HEREON, THE SUBJECT TRACT SHOWN HEREON, TRACT AS SHOWN HEREON, THE SUBJECT TRACT SOLICE, Delaware County, Ohio, IS LOCATED ON THE SUBJECT TRACT AS SHOWN HEREON, THE SUBJECT TRACT			Easements appearing of record in Official Record Volume 79, page 2547 and Official Record Volume 523, page 77, Recorder's Office, Delaware County, Ohio. 10' ELECTRIC	Item 28	Easement of record in Deed Book 342, page 45, Recorder's Office, Delaware County, Ohio. 16' EASEMENT IS LOCATED ON THE SUBJECT
Volume 665, page 2503, Recorder's Office, Delaware County, Ohio. 107 (SAS EASEMENT OF V. 668, PG. 2503, IS LOCATED ON THE SUBJECT TRACT AS SHOWN HEREON, THE 30 TEMPORARY CONSTRUCTION EASEMENT HAS EXPIRED. Item 30 Platted Building Setback Lines per recorded plat of subdivision of record in DSTEBACK LINES ARE LOCATED ON THE SUBJECT TRACT AS SHOWN HEREON. Item 21 Easement appearing of record in Official Record Volume 645, page 296, Recorder's Office. Delaware County, Obio. 20' SANITARY EASEMENT OF V. 648, PC. 296, IS LOCATED ON THE SUBJECT TRACT SHOWN HEREON. Item 31 Platted utility easements per recorded plat of subdivision of record in Plat Cabinet 2, Slides 245, 245A-245B, Recorder's Office. Delaware County, Obio. 20' SANITARY EASEMENT OV V. 648, PC. 296, IS LOCATED ON THE SUBJECT TRACT SHOWN HEREON. Item 22 Cell Tower Lease appearing of record in Official Record Volume 46, page 598, Assignment of record in Volume 54, page 807 and Volume 54, page 771, Recorder's Office, Delaware County, Obio. IS LOCATED ON THE SUBJECT TRACT AS SHOWN HEREON. Item 32 Subject to terms and conditions of Agreement of Resorder's Office, Delaware County, Obio. SLOCATED ON THE SUBJECT TRACT AS SHOWN HEREON. Item 24 Easement appearing of record in Official Record Volume 54, page 876, Assignment of record in Volume 54, page 807 and Volume 656, page 771, Recorder's Office, Delaware County, Obio. IS LOCATED ON THE SUBJECT TRACT AS SHOWN HEREON. Item 33-36 NOT SUBJECT TRACT IS LOCATED IN THE AREA DESCRIBED. Item 24 Easement graned to Columbus Souther Power Co. appearing of record in Official Record Volume 20, page 734, Recorder's Office, Delaware County, Obio. THE SUBJECT TRACT AS SHOWN HEREON.			ON THE SUBJECT TRACT AS SHOWN HEREON. 10' ELECTRIC EASEMENT OF V. 523, PG. 77, IS LOCATED ON THE SUBJECT TRACT CENTERED ON LINES AS	Item 29	THE SUBJECT TRACT IS LOCATED IN THE AREA DESCRIBED AND THE 12' EASEMENT IS CENTERED ON WATERLINE
Volume 64, page 296, Recorder's Office, Delaware County, Ohio. 20 SANITARY EASEMENT OF V. 645, PG. 296, IS LOCATED ON THE SUBJECT TRACT SHOWN subdivision of record in Plat Cabinet 2, Sildes 245, 245A-245B, Recorder's Office, Delaware County, Ohio. NOTE: THIS EXCEPTION IS SOLELY BENEFICIAL TO THE SUBJECT Record Volume 64, page 598, Assignment of record in Volume 54, page 807 and Volume 656, page 771, Recorder's Office, Delaware County, Ohio. SLOCATED ON THE SUBJECT TRACT AS SHOWN HEREON. Item 32 Subject to terms and conditions of Agreement of Restrictive Covenant by and between SSA LTD, an Ohio limited liability company and JLP-ME SUBJECT TRACT AS SHOWN HEREON. Item 23 Easement Agreement appearing of record in Official Record Volume 20, page 726, Assignment of record in Volume 54, page 807 and Volume 650, page 771, Recorder's Office, Delaware County, Ohio. IS LOCATED ON THE SUBJECT TRACT AS SHOWN HEREON. Item 33-36 NOT SURVEY RELATED ITEMS. Item 24 Easement granted to Columbus Southern Power Co. appearing of record in Official Record's Office, Delaware County, Ohio. IS LOCATED ON THE SUBJECT TRACT AS SHOWN HEREON. Item 32-36 NOT SURVEY RELATED ITEMS. Item 25 Easement of record in Deed Book 217, page 659, Recorder's Office, Delaware County, Ohio. THE DESCRIPTION PROVIDED. B. Surveyor's Affidavit, as per Plat Cabinet 2, page 278, Recorder's Office, Delaware County, Ohio. THE SUBJECT TRACT AS SHOWN HEREON. Item 26 Easement of record in Deed Book 217, page 659, Recorder's Office, Delaware County, Ohio. THE DESCRIPTION PROVIDED. B. Surveyor's Affidavit, as per Plat Cabinet 2, page 278, Recorder's Office, Delaware County, Ohio. THE SUBJECT TRACT IS LOCATED IN THE		Item 20	Volume 668, page 2503, Recorder's Office, Delaware County, Ohio. 10' GAS EASEMENT OF V. 668, PG. 2503, IS LOCATED ON THE SUBJECT TRACT AS SHOWN HEREON, THE 30' TEMPORARY CONSTRUCTION	Item 30	of subdivision of record in Plat Cabinet 2, Slides 245, 245A-245B, Recorder's Office, Delaware County, Ohio. BUILDING SETBACK LINES ARE LOCATED ON THE SUBJECT TRACT
Record Volume 46, page 598, Assignment of record in Volume 54, page 807 and Volume 656, page 771, Recorder's Office, Delaware County, Ohio. IS LOCATED ON THE SUBJECT TRACT AS SHOWN HEREON. Item 23 Easement Agreement appearing of record in Official Record Volume 20, page 726, Assignment of record in Volume 54, page 807 and Volume 656, page 771, Recorder's Office, Delaware County, Ohio. SLUCATED ON THE SUBJECT TRACT AS SHOWN HEREON. Item 24 Easement granted to Columbus Southern Power Co. appearing of record in Official Record Power Co. appearing of record in Official Record Volume 627, page 649, Recorder's Office, Delaware County, Ohio. IS LOCATED ON THE SUBJECT TRACT AS SHOWN HEREON. Item 25 Easement of record in Deed Book 217, page 659, Recorder's Office, Delaware County, Ohio. THE LOCATED N THE DESCRIPTION PROVIDED. Item 26 Easement of record in Deed Book 217, page 659, Recorder's Office, Delaware County, Ohio. THE DESCRIPTION PROVIDED. Item 26 Easement of record in Deed Book 217, page 659, Recorder's Office, Delaware County, Ohio. THE DESCRIPTION PROVIDED. Item 26 Easement of record in Deed Book 217, page 659, Recorder's Office, Delaware County, Ohio. THE DESCRIPTION PROVIDED. Item 26 Easement of record in Deed Book 217, page 659, Recorder's Office, Delaware County, Ohio. THE DESCRIPTION PROVIDED. Item 26 Easement of record in Deed Book 217, page 659, Recorder's Office, Delaware County, Ohio. THE DESCRIPTION PROVIDED. Item 26 Easement of record in Deed Book 217, page 659, Recorder's Office, Delaware County, Ohio. THE LOCATION OF THE EASEMENT CAN NOT BE DETERMINED FROM THE DESCRIPTION PROVIDED.		Item 21	Volume 645, page 296, Recorder's Office, Delaware County, Ohio. 20' SANITARY EASEMENT OF V. 645, PG. 296, IS LOCATED ON THE SUBJECT TRACT SHOWN	Item 31	subdivision of record in Plat Cabinet 2, Slides 245, 245A-245B, Recorder's Office, Delaware County, Ohio. NOTE: THIS EXCEPTION IS SOLELY BENEFICIAL TO THE SUBJECT
Item 23Easement Agreement appearing of record in Official Record Volume 20, page 726, Assignment of record in Volume 54, page 807 and Volume 656, page 771, Recorder's Office, Delaware County, Ohio. IS LOCATED ON THE SUBJECT TRACT AS SHOWN HEREON.Ohio. SUBJECT TRACT IS LOCATED IN THE AREA DESCRIBED.Item 24Easement granted to Columbus Southern Power Co. appearing of record in Official Record Volume 627, page 649, Recorder's Office, Delaware County, Ohio. 10' EASEMENT IS LOCATED ON THE SUBJECT TRACT AS SHOWN HEREON.A. Non-Disturbance Agreement appearing of record in Official Record record in Official Record Volume 20, page 734, Recorder's Office, Delaware County, Ohio. 10' EASEMENT IS LOCATED ON THE SUBJECT TRACT AS SHOWN HEREON.B. Surveyor's Affidavit, as per Plat Cabinet 2, page 278, Recorder's Office, Delaware County, Ohio. THE SUBJECT TRACT IS LOCATED N HEREON.Item 25Easement of record in Deed Book 217, page 659, Recorder's Office, Delaware County, Ohio. THE DESCRIPTION PROVIDED.B. Surveyor's Affidavit, as per Plat Cabinet 2, page 278, Recorder's Office, Delaware County, Ohio. THE SUBJECT TRACT IS LOCATED IN THE AREA DESCRIBED.Item 26Easement of record in Deed Book 217, page 674, Recorder's Office, Delaware County, Ohio. THE LOCATION OF THE EASEMENT CAN NOT BE DETERMINED FROM THE DESCRIPTION PROVIDED.B. Surveyor's Affidavit, as per Plat Cabinet 2, page 278, Recorder's Office, Delaware County, Ohio. THE LOCATION OF THE EASEMENT CAN NOT BE DETERMINED FROM THE DESCRIPTION OF THE EASEMENT CAN NOT BE DETERMINED FROM THE DESCRIPTION OF THE EASEMENT CAN NOT BE DETERMINED FROM THE		Item 22	Record Volume 46, page 598, Assignment of record in Volume 54, page 807 and Volume 656, page 771, Recorder's Office, Delaware County, Ohio. IS LOCATED ON THE SUBJECT	Item 32	Restrictive Covenant by and between SSA LTD., an Ohio limited liability company and JLP-ME Sawmill LLC, an Ohio limited liability company, dated May 9, 2012, filed for record on May 21, 2012 of record in Official Record Book 1122,
Co. appearing of record in Official Record Volume 627, page 649, Recorder's Office, Delaware County, Ohio. 10' EASEMENT IS LOCATED ON THE SUBJECT TRACT AS LOCATED ON THE SUBJECT TRACT AS SHOWN HEREON. Item 25 Easement of record in Deed Book 217, page 659, Recorder's Office, Delaware County, Ohio. THE LOCATION OF THE EASEMENT CAN NOT BE DETERMINED FROM THE DESCRIPTION PROVIDED. Item 26 Easement of record in Deed Book 217, page 674, Recorder's Office, Delaware County, Ohio. THE LOCATION OF THE EASEMENT CAN NOT BE DETERMINED FROM THE DESCRIPTION OF THE EASEMENT CAN NOT BE DETERMINED FROM THE		Item 23	Official Record Volume 20, page 726, Assignment of record in Volume 54, page 807 and Volume 656, page 771, Recorder's Office, Delaware County, Ohio. IS LOCATED ON THE		Ohio. SUBJECT TRACT IS LOCATED IN THE AREA DESCRIBED. NOT SURVEY RELATED ITEMS.
Item 25Easement of record in Deed Book 217, page 659, Recorder's Office, Delaware County, Ohio. THE LOCATION OF THE EASEMENT CAN NOT BE DETERMINED FROM THE DESCRIPTION PROVIDED.page 278, Recorder's Office, Delaware County, Ohio. THE SUBJECT TRACT IS LOCATED IN THE AREA DESCRIBED.Item 26Easement of record in Deed Book 217, page 674, Recorder's Office, Delaware County, Ohio. THE LOCATION OF THE EASEMENT CAN NOT BE DETERMINED FROM THE DESCRIPTION PROVIDED.Item 26		Item 24	Co. appearing of record in Official Record Volume 627, page 649, Recorder's Office, Delaware County, Ohio. 10' EASEMENT IS LOCATED ON THE SUBJECT TRACT AS		record in Official Record Volume 20, page 734, Recorder's Office, Delaware, Ohio. IS LOCATED ON THE SUBJECT TRACT AS SHOWN HEREON.
674, Recorder's Office, Delaware County, Ohio. THE LOCATION OF THE EASEMENT CAN NOT BE DETERMINED FROM THE	3 7 71	Item 25	Recorder's Office, Delaware County, Ohio. THE LOCATION OF THE EASEMENT CAN NOT BE DETERMINED FROM THE		page 278, Recorder's Office, Delaware County, Ohio. THE SUBJECT TRACT IS LOCATED
		Item 26	674, Recorder's Office, Delaware County, Ohio. THE LOCATION OF THE EASEMENT CAN		

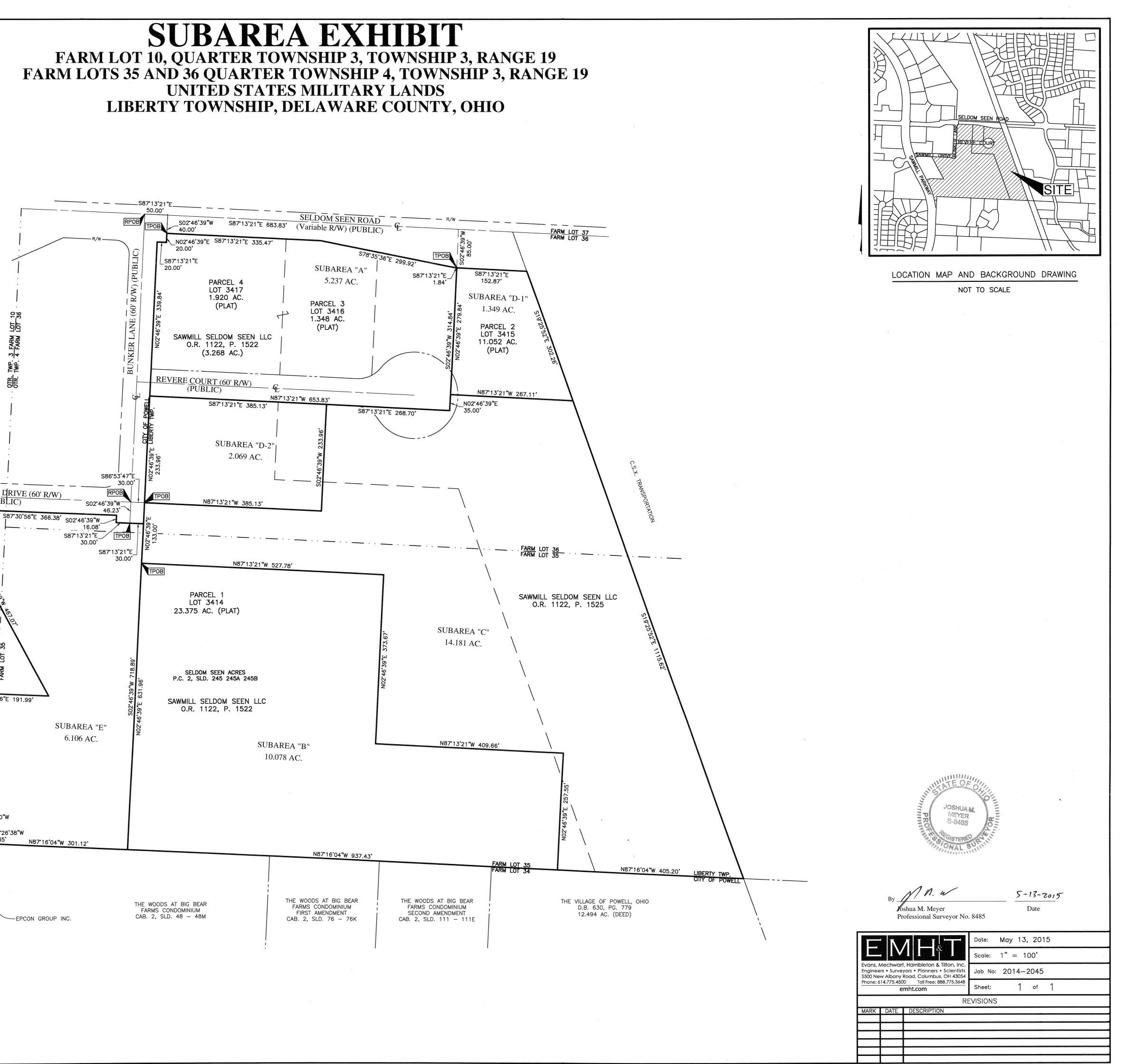
CERTIFICATION: Commitment No. 30625

O.R. 46, P. 598 O.R. 54, P. 807 O.R. 656, P. 771


hain Link Fence

To: First American Title Insurance Company, Schottenstein Real Estate Group LLC, an Ohio limited liability company.

This is to certify that this map or plat and the survey on which it is based were made in accordance with the 2011 "Minimum Standard Detail Requirements for ALTA/ACSM Land Title Surveys", jointly established and adopted by ALTA and NSPS, and includes Items 1, 3, 4, 7(a), 8, 9 11(a), and 13 of Table A thereof. Field work was completed on June 29,


EINHEAT Evans, Mechwart, Hambleton & Tilton, Inc. Engineers * Surveyors * Planners * Scientists 5500 New Albany Road, Columbus, OH 43054 Phone: 614.775.4500 Toll Free: 888.775.3648 emht.com			Date: May 13, 2015
			Scale: 1" = 100'
		yors = Planners = Scientists Road, Columbus, OH 43054	Job No: 20142045
			Sheet: 1 of 1
REVISIONS			
MARK	DATE	DESCRIPTION	

Joshua M. Meyer Professional Surveyor No. 8485

GRAPHIC SCALE (in feet)

SUBAREA EXHIBIT LIBERTY TOWNSHIP, DELAWARE COUNTY, OHIO

SUBAREA "A" 5.237 ACRES

Situated in the State of Ohio, County of Delaware, Township of Liberty, located in Farm Lot 36 Quarter Township 4, Township 3, Range 19, United States Military Lands, being all of Lots 3417 and 3416 and part of Lot 3415 and Revere Court of that subdivision entitled "Seldom Seen Acres" of record in Plat Cabinet 2, Slides 245, 245A and 245B, being part of those tracts conveyed to Sawmill Seldom Seen LLC by deeds of record in Official Record 1122, Page 1522 and Official Record 1122, Page 1525, (all references refer to the records of the Recorder's Office, Delaware County, Ohio) being more particularly described as follows:

Beginning, for reference, at the intersection of the centerline of Bunker Lane and the centerline of Seldom Seen Road;

thence South 87° 13' 21" East, with said centerline of Seldom Seen Road, a distance of 50.00 feet to a point;

thence South 02° 46' 39" West, across said Seldom Seen Road, a distance of 40.00 feet to a point in the southerly right-of-way line of said Seldom Seen Road, the TRUE POINT OF BEGINNING;

thence with said southerly right-of-way line, the following courses and distances:

South 87° 13' 21" East, a distance of 335.47 feet to a point;

South 78° 35' 36" East, a distance of 299.92 feet to a point; and

South 87° 13' 21" East, a distance of 1.84 feet to a point;

thence South 02° 46' 39" West, across said Lot 3415 and across Revere Court, a distance of 314.84 feet to a point;

thence North 87° 13' 21" West, continuing across said Revere Court, a distance of 653.83 feet to a point in the easterly right-of-way line of said Bunker Lane;

thence with said easterly right-of-way line, the following courses and distances:

North 02° 46' 39" East, a distance of 339.84 feet to an angle point in said easterly right-ofway line;

South 87° 13' 21" East, a distance of 20.00 feet to an angle point in said easterly right-of-way line; and

North 02° 46' 39" East, a distance of 20.00 feet to the TRUE POINT OF BEGINNING, containing 5.237 acres, more or less.

This description was prepared from document of record, is for zoning purposes only, and is not to be used for transfer.

EVANS, MECHWART, HAMBLETON & TILTON, INC.

MMM

5-13-2015

Joshua M. Meyer Professional Surveyor No. 8485

SUBAREA "B" 10.078 ACRES

Situated in the State of Ohio, County of Delaware, Township of Liberty, located in Farm Lot 35 Quarter Township 4, Township 3, Range 19, United States Military Lands, being part of Lots 3414 and 3415 of that subdivision entitled "Seldom Seen Acres" of record in Plat Cabinet 2, Slides 245, 245A and 245B, being part of that tract conveyed to Sawmill Seldom Seen LLC by deeds of record in Official Record 1122, Page 1522 and Official Record 1122, Page 1525, (all references refer to the records of the Recorder's Office, Delaware County, Ohio) being more particularly described as follows:

Beginning, for reference, at the intersection of the centerline of Bunker Lane and the centerline of Sawmill Drive;

thence South 86° 53' 47" East, across said Bunker Lane, a distance of 30.00 feet to the easterly right-of-way line of said Bunker Lane;

thence South 02° 46' 39" West, with said easterly right-of-way line and across said Lot 3414, a distance of 133.00 feet to the TRUE POINT OF BEGINNING;

thence South 87° 13' 21" East, continuing across said Lot 3414, a distance of 527.78 feet to a point;

thence South 02° 46' 39" West, continuing across said Lot 3414, a distance of 373.67 feet to a point;

thence South 87° 13' 21" East, continuing across said Lot 3414 and across said Lot 3415, a distance of 409.66 feet to a point;

thence South 02° 46' 39" West, continuing across said Lots 3414 and 3415, a distance of 257.55 feet to a point in the northerly line of that 12.494 acre tract conveyed to The Village of Powell, Ohio by deed of record in Deed Book 630, Page 779;

thence North 87° 16' 04" West, with the line common to said Lot 3414 and said 12.494 acre tract, that tract conveyed to The Woods at Big Bear Farms Condominium Second Amendment by deed of record in Cabinet 2, Slides 111-111E, that tract conveyed to The Woods at Big Bear Farms Condominium First Amendment by deed of record in Cabinet 2, Slides 76-76K and that tract conveyed to The Woods at Big Bear Farms Condominium by deed of record in Cabinet 2, Slides 48-48M, a distance of 937.43 feet to a point;

thence North 02° 46' 39" East, across said Lot 3414, a distance of 631.96 feet to the TRUE POINT OF BEGINNING, containing 10.078 acre, more or less.

This description was prepared from documents of record, is for zoning purposes only, and is not to be used for transfer.

EVANS, MECHWART, HAMBLETON & TILTON, INC.

Nh.n

Joshua M. Meyer Professional Surveyor No. 8485

5-13-2015

SUBAREA "C" 14.181 ACRES

Situated in the State of Ohio, County of Delaware, Township of Liberty, located in Farm Lots 35 and 36 Quarter Township 4, Township 3, Range 19, United States Military Lands, being part of Lots 3414 and 3415 and Revere Court of that subdivision entitled "Seldom Seen Acres" of record in Plat Cabinet 2, Slides 245, 245A and 245B, being part of that tract conveyed to Sawmill Seldom Seen LLC by deeds of record in Official Record 1122, Page 1522 and Official Record 1122, Page 1525, (all references refer to the records of the Recorder's Office, Delaware County, Ohio) being more particularly described as follows:

Beginning, for reference, at the intersection of the centerline of Bunker Lane and the centerline of Sawmill Drive;

thence South 86° 53' 47" East, across said Bunker Lane, a distance of 30.00 feet to the easterly right-of-way line of said Bunker Lane, the TRUE POINT OF BEGINNING;

thence South 87° 13' 21" East, across said Lot 3414, a distance of 385.13 feet to a point;

thence North 02° 46' 39" East, continuing across said Lot 3414 and across said Lot 3415 and Revere Court, a distance of 233.96 feet to a point;

thence South 87° 13' 21" East, across said Revere Court, a distance of 268.70 feet to a point;

thence North 02° 46' 39" East, continuing across said Revere Court, a distance of 35.00 feet to a point;

thence South 87° 13' 21" East, continuing across said Revere Court and across said Lot 3415, a distance of 267.11 fee to a point in the westerly line of that tract conveyed to C.S.X. Transportation;

thence South 19° 25' 52" East, with the line common to said C.S.X. Transportation and Lot 3415, a distance of 1115.62 feet to the northeasterly corner of that 12.494 acre tract conveyed to The Village of Powell, Ohio by deed of record in Deed Book 630, Page 779;

thence North 87° 16' 04" West, with the line common to said Lot 3415 and said 12.494 acre tract and the line common to said Lot 3414 and said 12.494 acre tract, a distance of 405.20 feet to a point;

thence North 02° 46' 39" East, across said Lots 3414 and 3415, a distance of 257.55 feet to a point;

thence North 87° 13' 21" West, continuing across said Lots 3414 and 3415, a distance of 409.66 feet to a point;

thence North 02° 46' 39" East, across said Lot 3414, a distance of 373.67 feet to a point;

thence North 87° 13' 21" West, continuing across said Lot 3414, a distance of 527.78 feet to a point;

thence North 02° 46' 39" East, continuing across said Lot 3414 and with said easterly rightof-way line, a distance of 133.00 feet to the TRUE POINT OF BEGINNING, containing 14.181 acres, more or less.

This description was prepared from documents of record, is for zoning purposes only, and is not to be used for transfer.

EVANS, MECHWART, HAMBLETON & TILTON, INC.

M.M.W

5-13-2015

Joshua M. Meyer Professional Surveyor No. 8485

SUBAREA "D-1" 1.349 ACRES

Situated in the State of Ohio, County of Delaware, Township of Liberty, located in Farm Lot 36 Quarter Township 4, Township 3, Range 19, United States Military Lands, being part of Lot 3415 and Revere Court of that subdivision entitled "Seldom Seen Acres" of record in Plat Cabinet 2, Slides 245, 245A and 245B, being part of that tract conveyed to Sawmill Seldom Seen LLC by deed of record in Official Record 1122, Page 1525, (all references refer to the records of the Recorder's Office, Delaware County, Ohio) being more particularly described as follows:

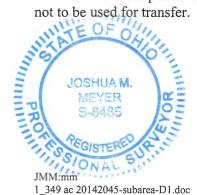
Beginning, for reference, at the intersection of the centerline of Bunker Lane and the centerline of Seldom Seen Road;

thence South 87° 13' 21" East, with said centerline of Seldom Seen Road, a distance of 683.83 feet to a point;

thence South 02° 46' 39" West, across said Seldom Seen Road, a distance of 85.00 feet to a point in the southerly right-of-way line of said Seldom Seen Road, the TRUE POINT OF BEGINNING;

thence South 87° 13' 21" East, with said southerly right-of-way line, a distance of 152.87 feet to the northeast corner of said Lot 3415, in the westerly line of that tract conveyed to C.S.X. Transportation;

thence South 19° 25' 52" East, with the line common to said Lot 3415 and said C.S.X. Transportations tract, a distance of 302.26 feet to a point;


thence North 87° 13' 21" West, across said Lot 3415 and across Revere Court, a distance of 267.11 feet to a point;

thence North 02° 46' 39" East, continuing across said Revere Court and said Lot 3415, a distance of 279.84 feet to the TRUE POINT OF BEGINNING, containing 1.349 acres, more or less.

This description was prepared from documents of record, is for zoning purposes only, and is not to be used for transfer.

Mr. w

Joshua M. Meyer Professional Surveyor No. 8485

Date

5-13-2015

SUBAREA "D-2" 2.069 ACRES

Situated in the State of Ohio, County of Delaware, Township of Liberty, located in Farm Lot 36 Quarter Township 4, Township 3, Range 19, United States Military Lands, being part of Lots 3414 and 3415 and Revere Court of that subdivision entitled "Seldom Seen Acres" of record in Plat Cabinet 2, Slides 245, 245A and 245B, being part of that tract conveyed to Sawmill Seldom Seen LLC by deeds of record in Official Record 1122, Page 1522 and Official Record 1122, Page 1525, (all references refer to the records of the Recorder's Office, Delaware County, Ohio) being more particularly described as follows:

Beginning, for reference, at the intersection of the centerline of Bunker Lane and the centerline of Sawmill Drive;

thence South 86° 53' 47" East, across said Bunker Lane, a distance of 30.00 feet to a point in the easterly right-of-way line of said Bunker Lane, the TRUE POINT OF BEGINNING;

thence North 02° 46' 39" East, with said easterly right-of-way line, a distance of 233.96 feet to a point;

thence South 87° 13' 21" East, across Revere Court, a distance of 385.13 feet to a point;

thence South 02° 46' 39" West, continuing across Revere Court and said Lots 3414 and 3415, a distance of 233.96 feet to a point;

thence North 87° 13' 21" West, continuing across said Lot 3414, a distance of 385.13 feet to the TRUE POINT OF BEGINNING, containing 2.069 acres, more or less.

This description was prepared from documents of record, is for zoning purposes only, and is not to be used for transfer.

EVANS, MECHWART, HAMBLETON & TILTON, INC.

m.n

5-13-2015

Joshua M. Meyer Professional Surveyor No. 8485

Date

SUBAREA "E" 6.106 ACRES

Situated in the State of Ohio, County of Delaware, Township of Liberty, located in Farm Lots 35 and 36 Quarter Township 4, Township 3, Range 19, and Farm Lot 10, Quarter Township 3, Township 3, Range 19, United States Military Lands, being part of Lot 3414 of that subdivision entitled "Seldom Seen Acres" of record in Plat Cabinet 2, Slides 245, 245A and 245B, being part of that tract conveyed to Sawmill Seldom Seen LLC by deed of record in Official Record 1122, Page 1522, (all references refer to the records of the Recorder's Office, Delaware County, Ohio) being more particularly described as follows:

Beginning, for reference, at the intersection of the centerline of Bunker Lane and the centerline of Sawmill Drive;

thence South 02° 46' 39" West, with said centerline of Bunker Lane, a distance of 46.23 feet to a point in the northerly line of said Lot 3414, the TRUE POINT OF BEGINNING;

thence South 87° 13' 21" East, with the northerly line of said Lot 3414, a distance of 30.00 feet to a point in the easterly right-of-way line of said Bunker Lane;

thence South 02° 46' 39" West, across said Lot 3414, a distance of 718.89 feet to a point in the northerly line of that tract conveyed to The Woods at Big Bear Farms Condominium by deed of record in Cabinet 2, Slides 48-48M;

thence North 87° 16' 04" West, with the line common to said Lot 3414 said The Woods at Big Bear Farms Condominium tract, a distance of 301.12 feet to the northwesterly corner of said The Woods at Big Bear Farms Condominium;

thence South 02° 26' 38" West, continuing with said common line, a distance of 67.35 feet to the northeasterly corner of Lot 3272 of that subdivision entitled "Big Bear Farms Section 7" of record in Plat Cabinet 2, Slides 137, 137A and 137B;

thence North 87° 31' 20" West, with the line common to said Lots 3414 and 3272, a distance of 37.05 feet to a point in the easterly right-of-way line of Sawmill Parkway;

thence continuing with said easterly right-of-way line, with the arc of a curve to the left, having a central angle of 16° 26' 38", a radius of 1275.00 feet, an arc length of 365.93 feet, a chord bearing of North 19° 37' 30" West and chord distance of 364.67 feet a point of tangency;

thence North 27° 50' 49" West, continuing with said easterly right-of-way line of Sawmill Parkway, a distance of 40.25 feet to the southwesterly corner of Lot 3413 of said "Seldom Seen Acres";

thence with the line common to said Lots 3414 and 3413, the following courses and distance:

with the arc of a curve to the right, having a central angle of 24° 41' 25", a radius of 280.00 feet, an arc length of 120.66 feet, a chord bearing of North 80° 08' 22" East and chord distance of 119.73 feet to a point of tangency;

South 87° 30' 56" East, a distance of 191.99 feet to the southeasterly corner of said Lot 3413; and

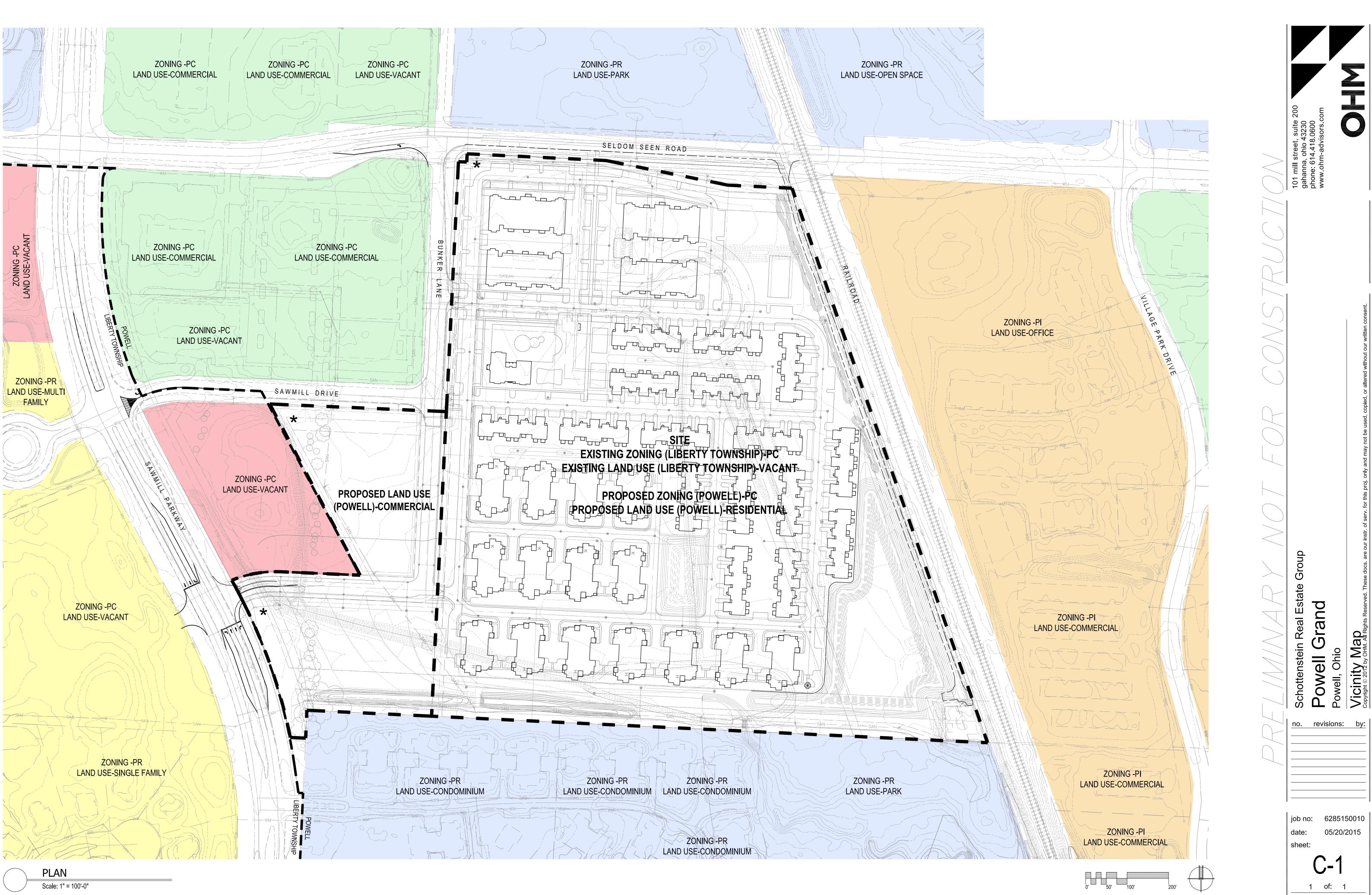
North 27° 50' 49" West, a distance of 467.07 feet to a point in the southerly right-of-way line of said Sawmill Drive;

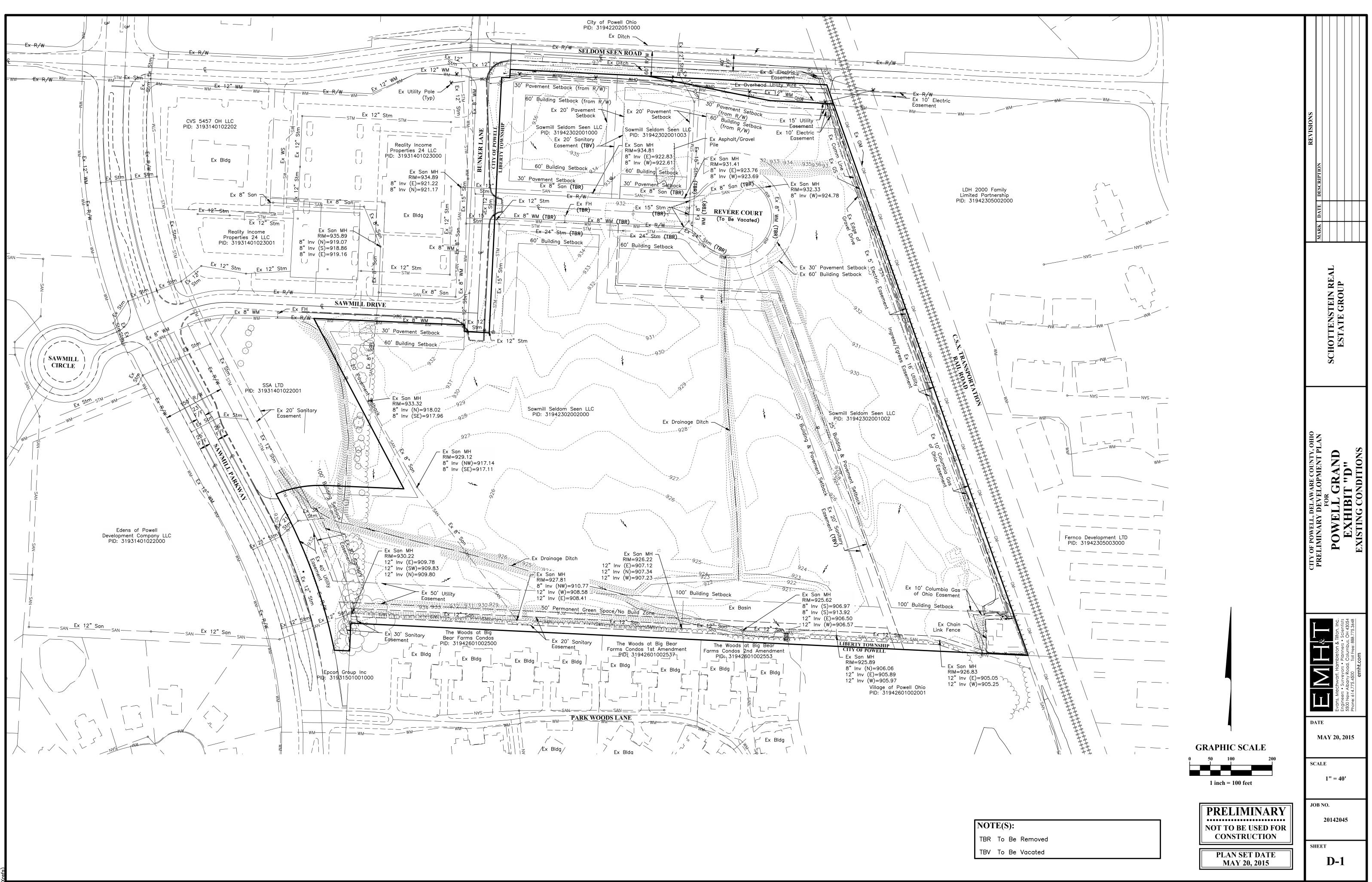
thence South 87° 30' 56" East, with said southerly right-of-way line, a distance of 366.38 feet to a point in the westerly right-of-way line of said Bunker Lane;

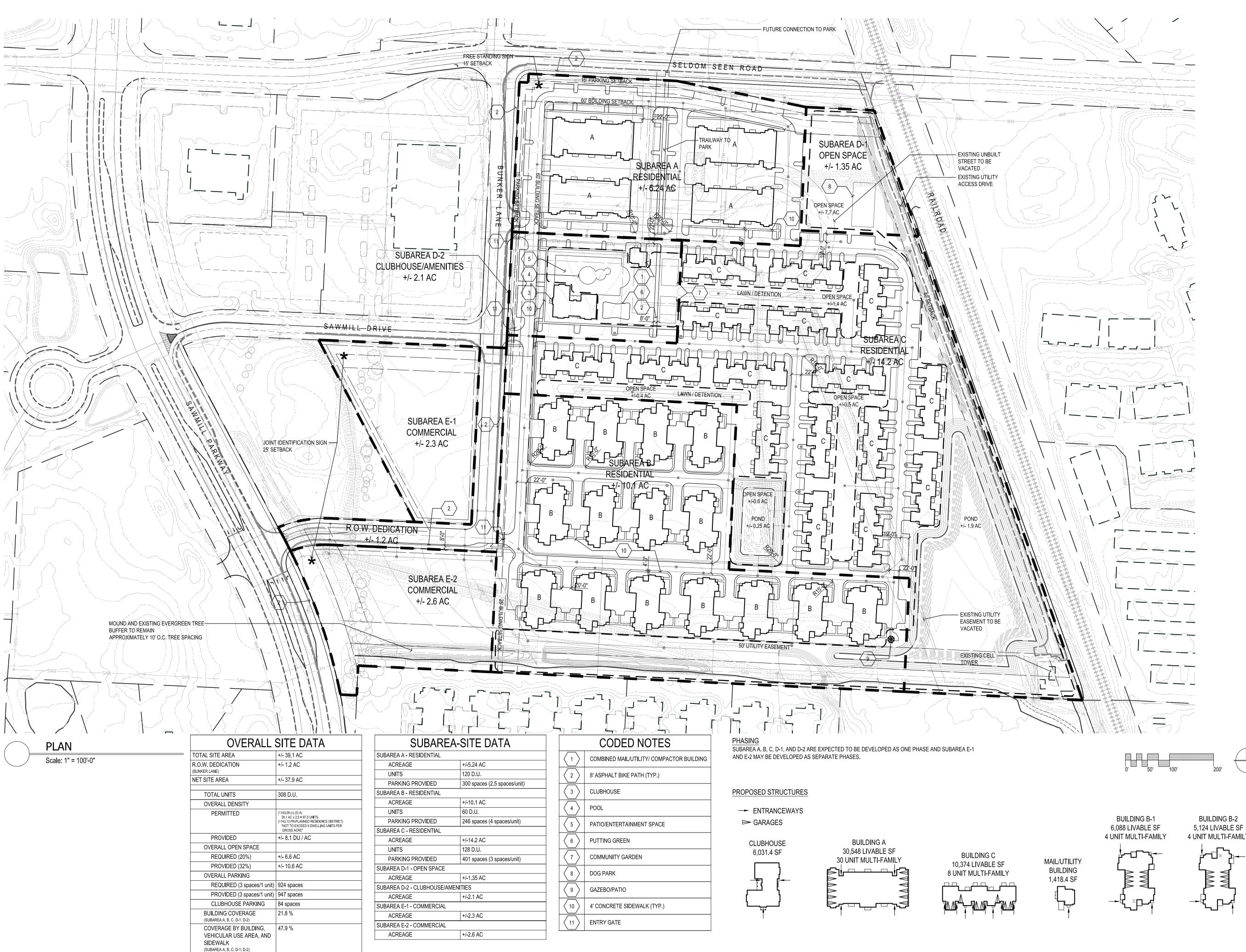
South 02° 46' 39" West, with said westerly right-of-way line, a distance of 16.08 feet to a point;

thence South 87° 13' 21" East, with the northerly line of said Lot 3414, a distance of 30.00 feet to the TRUE POINT OF BEGINNING, containing 6.106 acres, more or less.

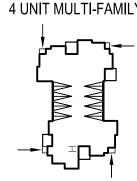
This description was prepared from documents of record, is for zoning purposes only, and is not to be used for transfer.


EVANS, MECHWART, HAMBLETON & TILTON, INC.


M. n


5-13-2015

Joshua M. Meyer Professional Surveyor No. 8485


Date

4 UNIT MULTI-FAMILY

101 mill street, suite 200 gahanna, ohio 43230 phone: 614.418.0600 www.ohm-advisors.com
e Group poment Plan hese doos. are our instr. of serv. for this proj. only and may not be used, copied, or altered without our written consent.
oi. only and may not be used, copied,
up ent Plan . are our instr. of serv. for this pro
Schottenstein Real Estate Group Powell Grand Powell, Ohio Preliminary Development Copyright © 2012 by OHM. All Rights Reserved. These docs. are our
no. revisions: by:
job no: 6285150010 date: 05/20/2015 sheet: E-1

1 of: 1

CONCEPT PLAN

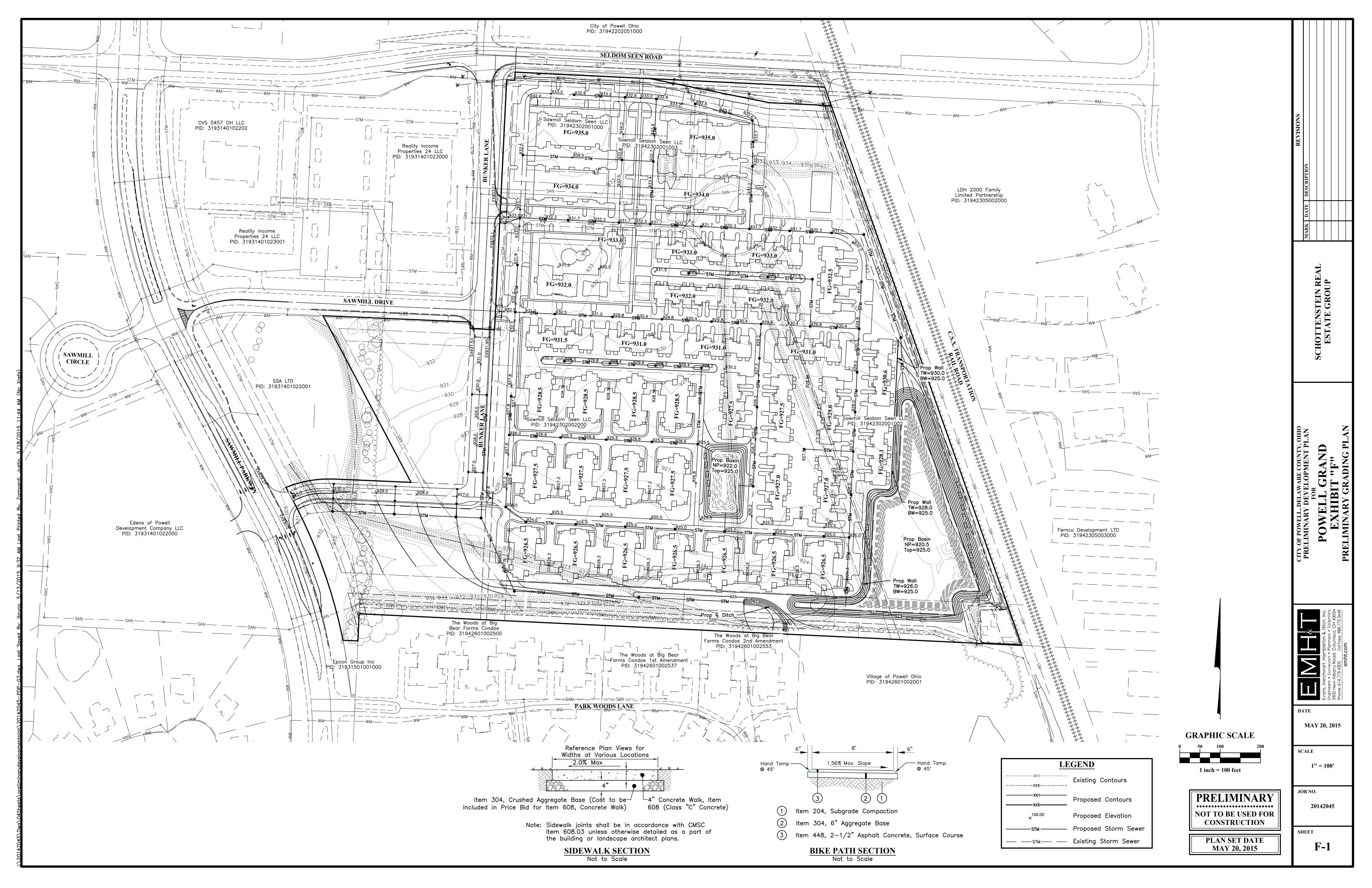
"ACTIVE ADULT CLASS-A GATED COMMUNITY"

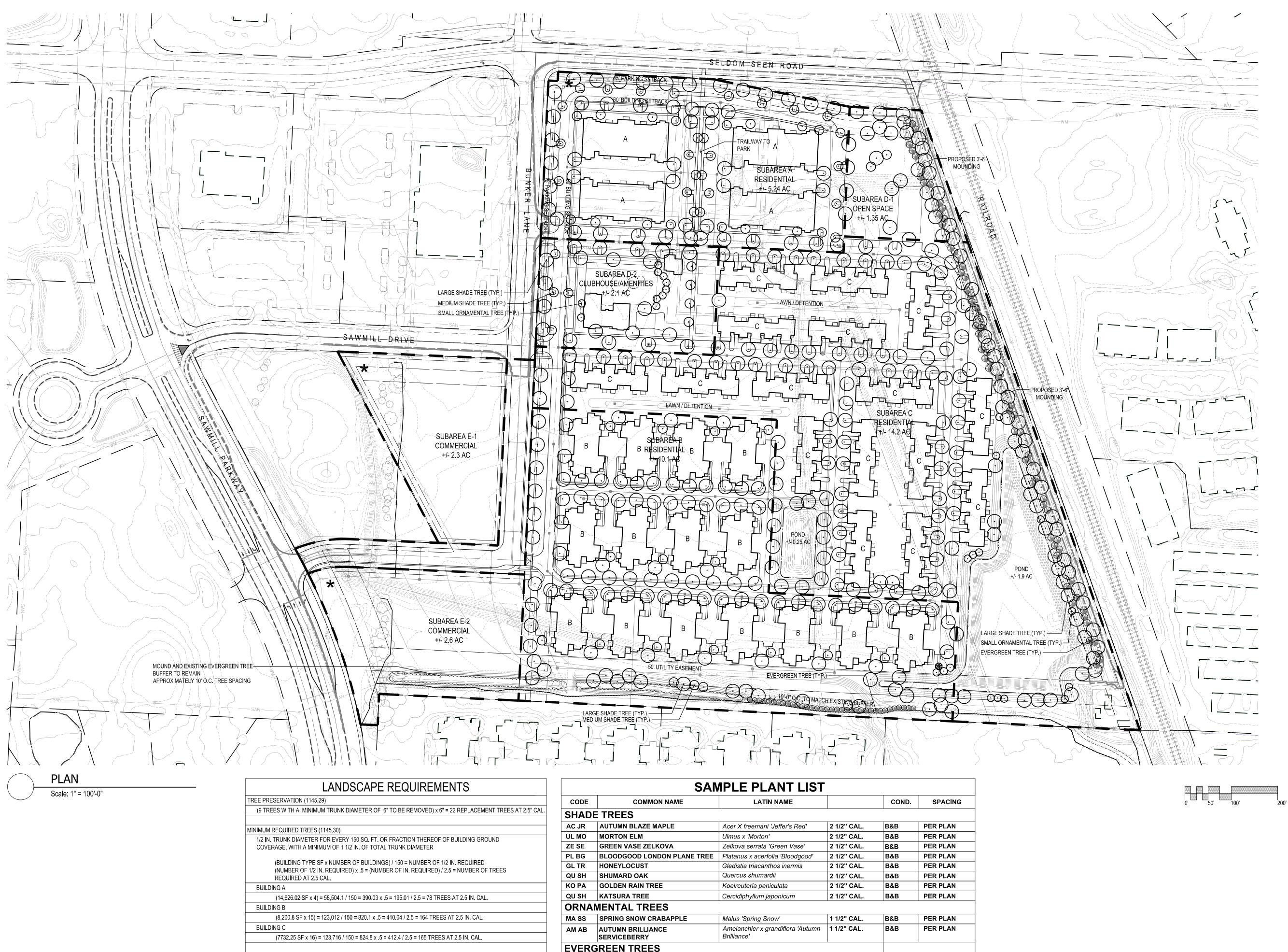
05.20.2015

SITE DATA

Total Site Area: Public ROW: Net Site Area:	+/- 39.1 ac +/- 1.2 ac +/- 37.9 ac
Subareas A,B,C,D-1,D-2: Multifamily Residential	+/- 33.0 ac
Building A: Lorgo Senior 1 and 2 Rodroom Suites	4 BLDG.
Large Senior 1 and 2 Bedroom Suites with Elevators, and Individual Garages: Parking Provided:	120 Units 300 spaces (2.5 sp/du)
Building B: 2 and 3 Bedroom Ranch Homes	15 BLDG.
with 2-Car Garages: Parking Provided:	60 Units 246 spaces (4 sp/du)
Building C: 2 and 3 Bedroom 2 Story	16 BLDG.
Townhomes with 1 Car Garages: Parking Provided:	128 Units 401 spaces (3.1 sp/du)
Total Units: Density (Net Site Area):	308 Units +/- 8.1 du/ac
Parking Required (3 spaces/1 unit): Parking Provided:	924 spaces +/- 947 spaces
*Parking provided includes garage spaces, driveway stacking spaces, ar Clubhouse Parking Provided:	•
Open Space Open Space Required: Open Space Provided:	+/- 6.6 ac (20%) +/- 10.6 ac (32%)
Subareas E-1&E-2	
Commerical Outparcels (2 Lots):	+/- 5.0 ac

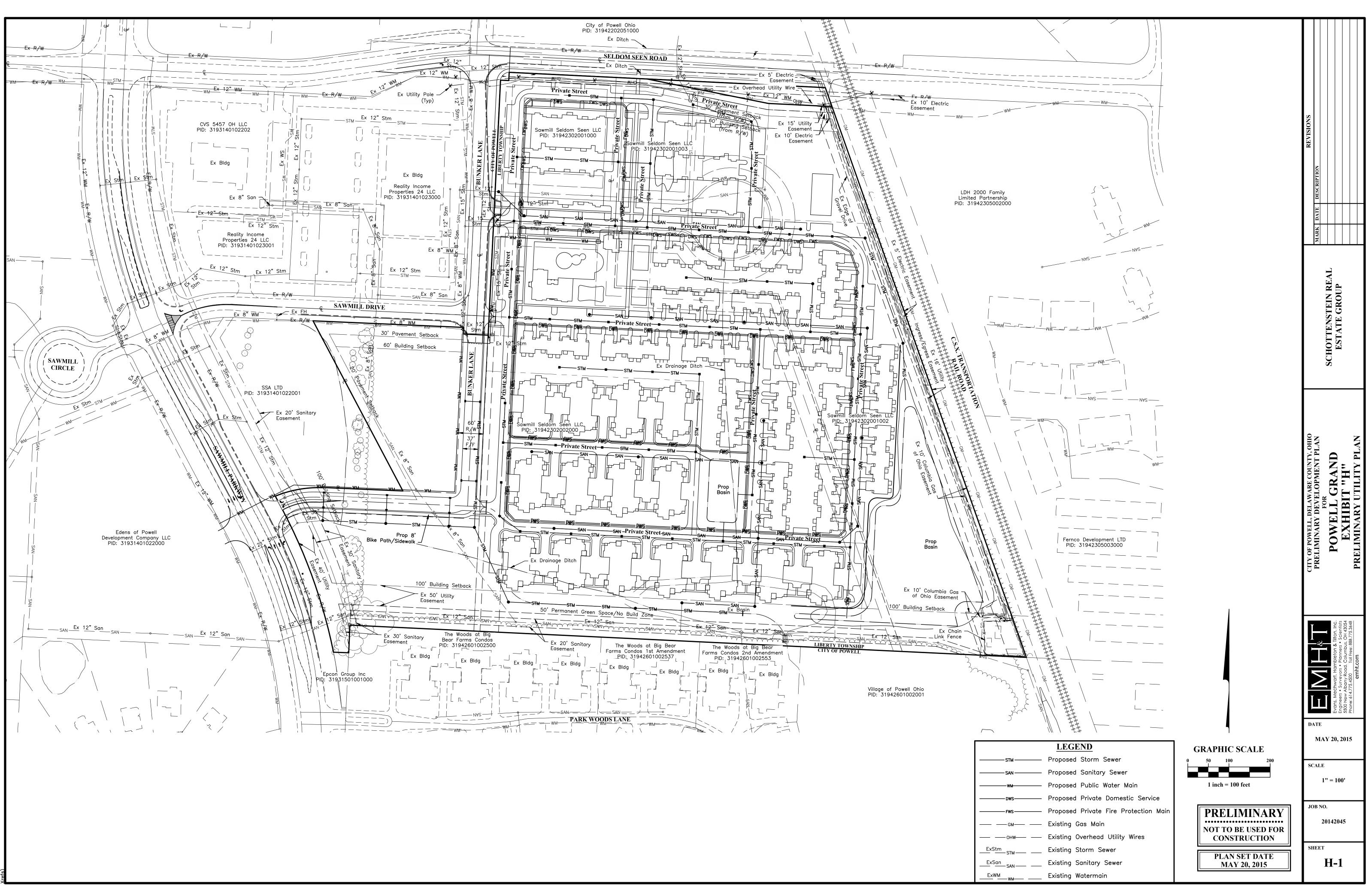
Persuant to the requirements of City of Powell Zoning Code section 1145.29, (c) and (d), existing trees within the development footprint will be surveyed and trees that are unable to be preserved will be replaced per code.


This property has been used for agriculture historically, therefore no natural watercourses traverse the site within the property boundaries. The headwater for Bartholomew Run is located at the southeast corner of the project and will be the discharge point for the site. A storm water basin will be located near this location to provide erosion and sediment control during construction and storm water quantity and quality control post a construction. The two man-made watercourses crossing the site will be filled and piped as part of the development process.


* Desired Sign Locations

0 50 100 200

SCHOTTENSTEIN REAL ESTATE GROUP



TOTAL NUMBER OF TREES REQUIRED = 407 TREES PROVIDED = 407 TREES

	SAN	IPLE PLANT LIST			
CODE	COMMON NAME			COND.	SPACING
SHADE	TREES		_		1
AC JR	AUTUMN BLAZE MAPLE	Acer X freemani 'Jeffer's Red'	2 1/2" CAL.	B&B	PER PLAN
UL MO	MORTON ELM	Ulmus x 'Morton'	2 1/2" CAL.	B&B	PER PLAN
ZE SE	GREEN VASE ZELKOVA	Zelkova serrata 'Green Vase'	2 1/2" CAL.	B&B	PER PLAN
PL BG	BLOODGOOD LONDON PLANE TREE	Platanus x acerfolia 'Bloodgood'	2 1/2" CAL.	B&B	PER PLAN
GL TR	HONEYLOCUST	Gledistia triacanthos inermis	2 1/2" CAL.	B&B	PER PLAN
QU SH	SHUMARD OAK	Quercus shumardii	2 1/2" CAL.	B&B	PER PLAN
KO PA	GOLDEN RAIN TREE	Koelreuteria paniculata	2 1/2" CAL.	B&B	PER PLAN
QU SH	KATSURA TREE	Cercidiphyllum japonicum	2 1/2" CAL.	B&B	PER PLAN
ORNA	MENTAL TREES	•		·	
MA SS	SPRING SNOW CRABAPPLE	Malus 'Spring Snow'	1 1/2" CAL.	B&B	PER PLAN
AM AB	AUTUMN BRILLIANCE SERVICEBERRY	Amelanchier x grandiflora 'Autumn Brilliance'	1 1/2" CAL.	B&B	PER PLAN
EVERG	REEN TREES				1
PI AB	NORWAY SPRUCE	Picea abies	6-8' HGT.	B&B	PER PLAN
PI GL	COLORADO BLUE SPRUCE	Picea pungens glauca	6-8' HGT.	B&B	PER PLAN

dno. Ū state rand Plan Rights Reser Ш Real G -andscape Schottenstein Ohio owell owell, Ū Å no. revisions: by: job no: 6285150010 05/20/2015 date: sheet: **U**-

1 of: 1

MEMO

Date:	May 12, 2015
То:	City of Powell
From:	Patricia Brown, PE
Subject:	Powell Grand Exhibit "H" – Utility Feasibility Letter
Copies:	Schottenstein Real Estate Group

The following is a summary of the public utility services for the above reference project located at the southeast corner of the intersection of Sawmill Parkway and Seldom Seen Road.

Stormwater Management

The site currently drains from north to southeast to an existing ditch located on The Woods at Big Bear Farms that is tributary to Bartholemew Run. There are two offsite drainage outlets onto the site as well. One storm crossing under Seldom Seen Road that is facilitated to the southeast corner of the site via incomplete infrastructure installed with a failed development of the site and a ditch; The second crossing is under Sawmill Parkway, which is also facilitated to the southeast corner of the site via a ditch.

Currently the stormwater management for the site is planned to be a wet basin. The wet basin will be required to accommodate Ohio EPA post construction water quality and storage requirements. Also, stormwater management will use appropriate measures for the Ohio EPA NPDES requirements during construction activities in the areas of the wet basins.

Furthermore, the two offsite outlets mentioned above will be passed through the site as is currently happening. This will be by new infrastructure which may include new storm sewer, swales, or a combination thereof.

Water Service

Currently, there is a 12-inch waterline along Sawmill Parkway and an 8-inch waterline along Seldom Seen Road. Additionally, there is an 8-inch waterline along Sawmill Drive and Bunker Lane. These lines are both owned and maintained by the Del-Co Water Company Inc. Per a letter dated March 27th, 2015 (attached) potable water is available for this development.

A legacy of experience. A reputation for excellence.

Sanitary Service

Currently, there is an 8-inch sanitary line along Sawmill Drive and Bunker Lane, and an 8-inch sanitary line that runs from Sawmill Drive southeast to a 12-inch sanitary line along the north edge of The Woods at Big Bear Farms. These lines are both owned and maintained by the Delaware County Regional Sewer District. Per a letter dated March 25th, 2015 (attached) sanitary service is available for this development.

Attachment:

Del-Co Water Availability Letter Sanitary Service Availability Letter

 $J: \label{eq:linear} J: \label{eq:linear} J: \label{eq:linear} U: \label{eq:linear} J: \label{eq:linear} J: \label{eq:linear} U: \label{eq:linear} U: \label{eq:linear} U: \label{eq:linear} U: \label{eq:linear} U: \label{eq:linear} J: \label{eq:linear} U: \lab$

Officers TIMOTHY D. McNAMARA President BRUCE A. BLACKSTON Vice President ROBERT W. JENKINS Secy.-Treas. GLENN MARZLUF General Manager/CEO SHANE CLARK Deputy General Manager

6658 OLENTANGY RIVER ROAD DELAWARE, OHIO 43015 www.delcowster.com Phone (740) 548-7746 • Fax (740) 548-6203 Directors WILLIAM E. COLE DOUGLAS D. DAWSON DAVID A. BENDER J. MICHAEL SHEETS BRIAN P. COGHLAN G. MICHAEL DICKEY PERRY K. TUDOR

March 27, 2015

Tracy Foltz EMH&T 5500 New Albany Road Columbus, Ohio 43054

RE: Water Availability Powell Grand Resort Living

Dear Ms. Foltz:

As requested, this is to inform you that Del-Co Water is able to provide water service to the site described below upon plan approval and payment of the required fees:

Development: Powell Grand Resort Living Proposed Land Use: Condominium Community (±308 units) Location: Southeast corner of Sawmill Parkway and Seldom Seen Road Acreage: ±39.1 acres

This site can be served from existing 8 through 12-inch waterlines located on surrounding roads. Due to the close proximity of the units in this development, it will likely be required to be served by a master meter.

This letter of water availability is valid for a period of one year from the date of this letter. Del-Co makes no guarantee of water availability beyond this period. Contact our Engineering Department if you have any questions on the plan review process, or our Customer Service Department for information on tap fees.

Sincerely, DEL-CO WATER COMPANY, INC.

Shane F. Clark, P.E. Engineering Manager

DELAWARE COUNTY DIVISION OF ENVIRONMENTAL SERVICES

CODE COMPLIANCE • REGIONAL SEWER DISTRICT • SOLID WASTE

TIFFANY A. JENKINS, P.E., DIRECTOR

March 25, 2015

EMH&T 5500 New Albany Rd Columbus, OH 43054

Attn: Tracy Foltz

Re: Powell Grand Resort Living

Dear Tracy,

Pursuant to your request dated March 26, 2015, for a sanitary sewer service availability letter for the above proposed development, we offer the following conditional sanitary sewer availability:

Availability

Sanitary sewer is available at the subject parcel. Availability means that new development on the subject parcel is permitted to connect to the County sewer system provided that there is sufficient capacity for the development, all requirements of the Sanitary Engineer's Office can be met, and the zoning expressly permits, and does not restrict the construction, use, operation, maintenance, repair, expansion, or replacement of all sanitary sewers, structures, and appurtenances.

Capacity

We understand that a total of 230.8 single family homes are sought to be built by the developer based on the development plan provided for Powell Grand Resort Living (48 one bedroom apartments, 228 two bedroom apartments, 32 three bedroom apartments, clubhouse and pool).

The sewer that serves this site does not capacity for these 230.8 units as of the date of this letter. Attached are three sewers highlighted in green that will either need to be enlarged or paralleled to increase the capacity of the sewers system to allow the proposed development.

Capacity is not reserved until such time that a subdivider's agreement is executed between the developer and the Board of Commissioners. Sewer capacity is dynamic and subject to decrease pending ongoing development.

Sewer Location

An existing 12" sanitary trunk sewer is located on the parcel.

Zoning Text / Development Plans

This confirmation of sanitary sewer availability is contingent on final zoning and environmental text for the development which permits, and does not restrict the construction, use, operation, maintenance, repair, expansion, or replacement of all sanitary sewers, structures, and appurtenances.

Jurisdictional Waters Report

To date, we have not received a copy of the Waters of the U.S. Report or a response from USACE. Following receipt of these items we may provide additional comments.

Landscaping / Entrance Features

As of the date of this letter, our office has not received landscaping and mounding plans or entrance feature locations. Following the receipt of these items we may provide additional comments which may affect these features.

Additional Comments

The Sanitary Engineer's Office may make additional comments upon review of any subsequent submittals.

If you have any questions, please feel free to contact me.

Sincerely,

Jack Smelker

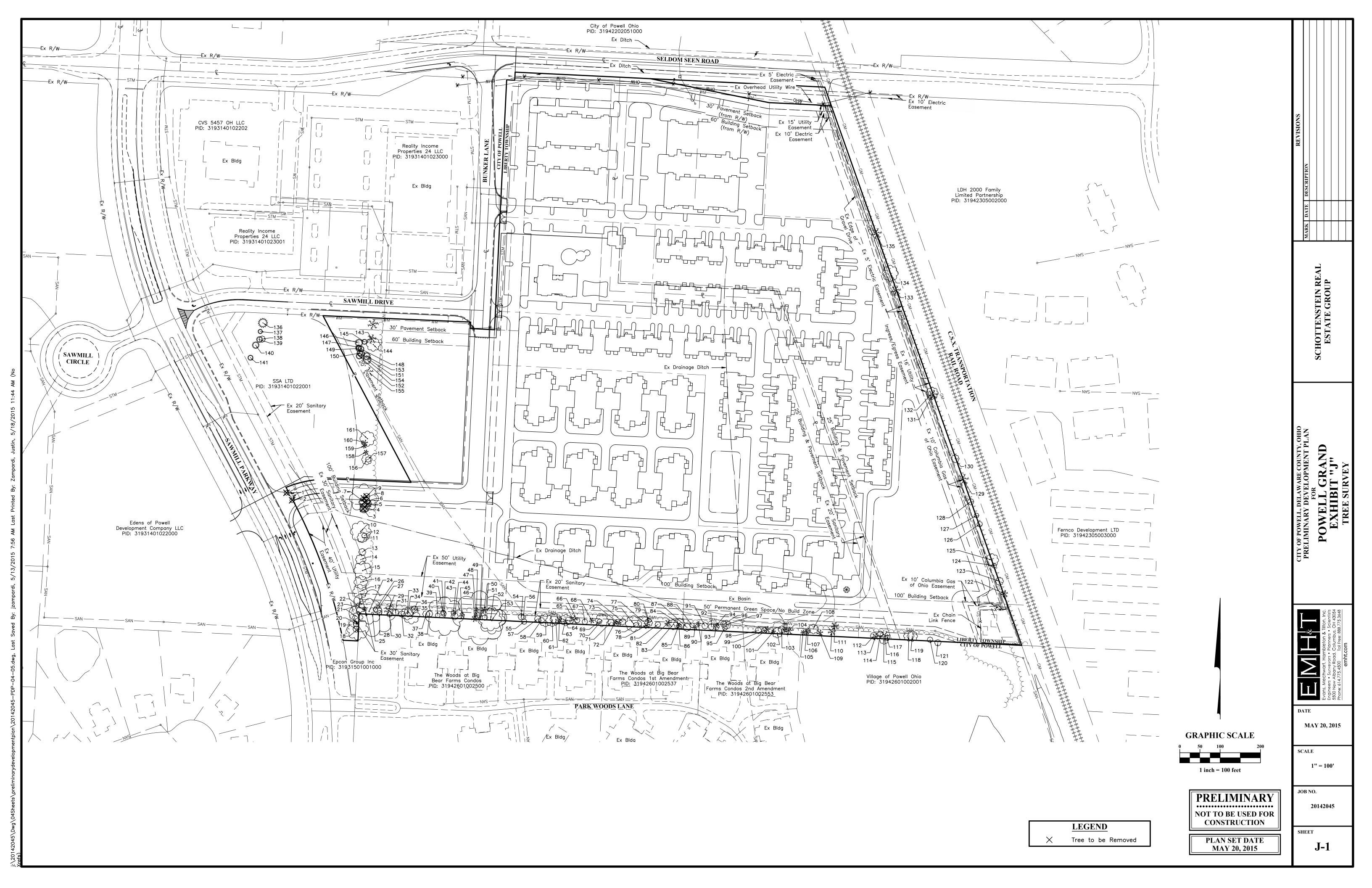
Jack Smelker

cc: File

CLUBHOUSE

CLUBHOUSE

BUILDING A



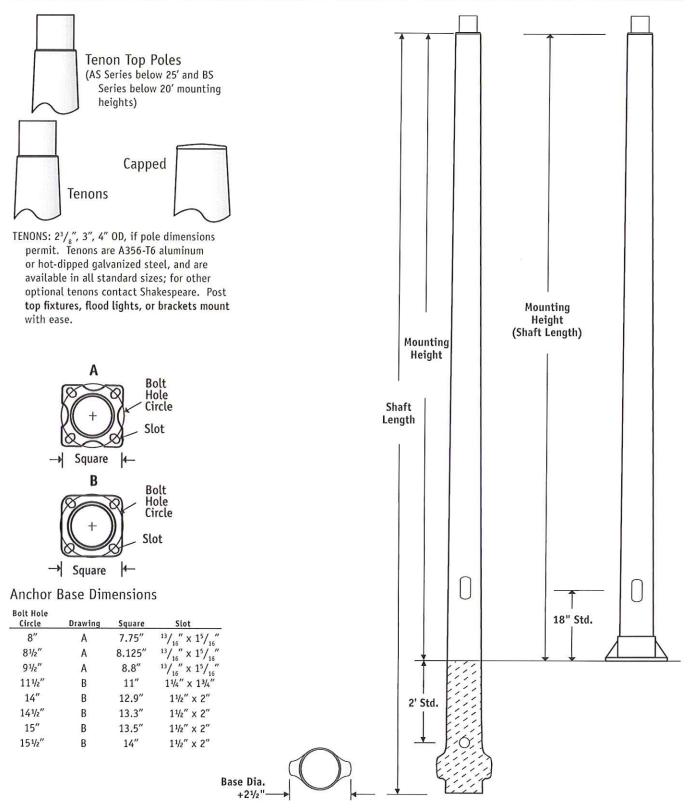
BUILDING B

BUILDING C

		Т	REE SUR	VEY DAT	A TABLE							r	FREE SURVEY	DATA TA	BLE			
TREE NO.	COMMON NAME	SCIENTIFIC NAME	SIZE (IN)	STEMS PER TREE	CONDITION	INDICATOR	REMOVE TREE	INCHES REMOVED	INCHES REPLACED	TREE NO.	COMMON NAME	SCIENTIFIC NAME	SIZE (IN)	STEMS PER TREE	CONDITION	INDICATOR	REMOVE INCHES	
	Eastern Cottonwood	Populus deltoides	6,6,6,6	4	Fair	Deciduous	×	24	24	-85-	Green Ash	-Fraxinus pennsylvanica	-6-	#	-Dead-	-Dead-	0	0
2	Sycamore Hackberry	Platanus occidentalis Celtis occidentalis	6,7 8	2	Fair Good	Deciduous Deciduous	×	13 8	13 8	86 87	Red Oak Red Oak	Quercus rubra Quercus rubra	7 10	1	Fair Fair	Deciduous Deciduous	0	0
4	Hackberry	Celtis occidentalis	12	1	Fair	Deciduous	x	12	12	88	Red Oak	Quercus rubra	6	1	Good	Deciduous	0	0
5	Hackberry	Celtis occidentalis	9	1	Good	Deciduous	×	9	9	-89-	Green Ash	<u>-Fraxinus pennsylvanica</u>	-6-	#	-Dead-	-Dead-	0	0
6	Hackberry Hackberry	Celtis occidentalis Celtis occidentalis	13	1	Good	Deciduous Deciduous	×	13 14	13 14	_90_ 91	— Sugar Maple – Shaqbark Hickory	Acer saccharum Carya ovata	_6_	1	- Dead	Dead Deciduous	0	0
8	Red Oak	Quercus rubra	36	1	Good Fair	Deciduous	×	36	36	91	Shagbark Hickory	Carya ovata	8	1	Good Good	Deciduous	0	0
9	Hackberry	Celtis occidentalis	8,6	2	Good	Deciduous	×	14	14	93	Red Oak	Quercus rubra	8	1	Good	Deciduous	0	0
10	Red Oak American Elm	Quercus rubra Ulmus americana	26,19	2	Good	Deciduous Deciduous		0	0	94 95	Green Ash Shaqbark Hickory	Fraxinus pennsylvanica Carya ovata	<u></u> <u>−</u> <u>6</u>	1	Dead Fair	Dead Deciduous	0	0
12	American Elm	Ulmus americana	13	1	Poor Fair	Deciduous		0	0	95	Eastern Cottonwood	Populus deltoides	8	1	Fair	Deciduous	0	0
13	White Oak	Quercus alba	9	1	Fair	Deciduous		0	0	97	Eastern Cottonwood	Populus deltoides	11	1	Fair	Deciduous	0	0
14	White Oak	Quercus alba	13	1	Fair	Deciduous		0	0	98	Shagbark Hickory	Carya ovata	8	1	Fair	Deciduous	0	0
15 16	White Oak White Oak	Quercus alba	23	1	Fair Fair	Deciduous Deciduous		0	0	99 100	Shagbark Hickory 	Carya ovata - Fraxinus pennsylvanica -	/ 		Good	Deciduous Dead-	0	0
17	White Oak	Quercus alba	18	1	Good	Deciduous		0	0	101	Green Ash	Fraxinus pennsylvanica	=		-Dead-	-Dead-	0	0
18	White Oak	Quercus alba	27	1	Poor	Deciduous		0	0	102	Osage-Orange	Maclura pomifera	13	1	Poor	Deciduous	0	0
19 20	White Oak White Oak	Quercus alba	8	1	Fair Poor	Deciduous Deciduous		0	0	103 104	Osage-Orange 	Maclura pomifera	9	1	Poor Dead	Deciduous Dead-	0	0
21	White Oak	Quercus alba	13	1	Fair	Deciduous		0	0	105	Green Ash	<u>Fraxinus pennsylvanica</u>		 	-Dead-	-Dead-	0	0
22	Mockernut Hickory	Carya tomentosa	12	1	Fair	Deciduous		0	0	106	Green Ash	<u>-Fraxinus pennsylvanica</u>		1	-Dead-	-Dead-	0	0
23 24	<u>Sugar Maple</u>	Acer saccharum	= _6	1	-Dead- Fair	-Dead-		0	0	107	Yellow Buckeye	Aesculus flava	6	1	Fair Fair	Deciduous Deciduous	0	0
24 25	White Oak White Oak	Quercus alba Quercus alba	32 58	1	Fair Poor	Deciduous Deciduous		0	0	108 109	Red Oak 	Quercus rubra <u>Fraxinus pennsylvanica</u>	12 8,6	1 	Fair Dead	Deciduous Dead-	0	0
26	Hackberry	Celtis occidentalis	6	1	Fair	Deciduous		0	0	110	Green Ash	<u>-Fraxinus pennsylvanica</u>	10	±	-Dead-	-Dead-	0	0
27	Hackberry	Celtis occidentalis	10	1	Fair	Deciduous		0	0	111	Green Ash	<u>Fraxinus pennsylvanica</u>	10	=	-Dead-	-Dead-	0	0
28 -29 -	Mockernut Hickory 	Carya tomentosa <u>Fraxinus pennsylvanica</u>	6 : 12	1	Good Dead	Deciduous Dead		0	0	112 113	American Elm Green Ash	Ulmus americana <u>Fraxinus pennsylvanica</u>	9 9,6	1	Fair Dead	Deciduous Dead	0	0
9	American Elm	Ulmus americana	7	1	Fair	Deciduous		0	0	114	Sugar Maple	Acer saccharum	7	<u> </u>	Good	Deciduous	0	0
31	White Oak	Quercus alba	8	1	Fair	Deciduous		0	0	115	Red Oak	Quercus rubra	12	1	Good	Deciduous	0	0
32 33	Red Oak Red Oak	Quercus rubra Quercus rubra	8	1	Fair	Deciduous Deciduous		0	0	116 117	Green Ash Sugar Maple	<u>Fraxinus pennsylvanica</u>	13 7	1	-Dead-	-Dead- Deciduous	0	0
33	Shagbark Hickory	Carya ovata	6	1	Good Good	Deciduous		0	0	117	Red Oak	Acer saccharum Quercus rubra	13	1	Good Good	Deciduous	0	0
35	Red Oak	Quercus rubra	21	1	Fair	Deciduous		0	0	119	Red Oak	Quercus rubra	13	1	Fair	Deciduous	0	0
36	Eastern Cottonwood	Populus deltoides	9	1	Good	Deciduous		0	0	120	Red Oak	Quercus rubra	7	1	Fair	Deciduous	0	0
37 38	Red Oak Red Oak	Quercus rubra Quercus rubra	9	1	Good Good	Deciduous Deciduous		0	0	121 122	American Elm Green Ash	Ulmus americana <u>Fraxinus pennsylvanica</u>	8	1	Poor Dead	Deciduous Dead	0	0
39	Shagbark Hickory	Carya ovata	6	1	Fair	Deciduous		0	0	123	Green Ash	Fraxinus pennsylvanica	10	1	Poor	Deciduous	0	0
40	Shagbark Hickory	Carya ovata	6	1	Good	Deciduous		0	0	124	Slippery Elm	Ulmus rubra	6	1	Fair	Deciduous	0	0
41	American Elm	Ulmus americana	7	1	Good	Deciduous		0	0	125	Mockernut Hickory	Carya tomentosa	16	1	Fair	Deciduous	0	0
42 43	Red Oak Shaqbark Hickory	Quercus rubra Carya ovata	48	1	Fair Good	Deciduous Deciduous		0	0	126 127	Box Elder Sugar Maple	Acer negundo Acer saccharum	7 6	1	Poor Fair	Deciduous Deciduous	0	0
44	American Elm	Ulmus americana	9,6	2	Fair	Deciduous		0	0	127	Sweetgum	Liquidambar styraciflua	8	1	Fair	Deciduous	0	0
45		Fraxinus pennsylvanica		=	-Dead-	-Dead-		0	0	129	Green Ash	<u>-Fraxinus pennsylvanica</u>	-15-	#	-Dead-	-Dead-	0	0
46 47	Green Ash	Fraxinus pennsylvanica Fraxinus pennsylvanica		 				0	0	130 131	American Elm Green Ash	Ulmus americana <u>Fraxinus pennsylvanica</u>	10 13,13,13,13,12	1 	Poor Dead	Deciduous	0	0
47 48		Ulmus americana	· :		-Dead- -Dead-	-Dead- -Dead-		0	0	132	Red Oak	Quercus rubra	15		Poor	Dead Deciduous	0	0
49	White Oak	Quercus alba	67	1	Fair	Deciduous		0	0	133	Green Ash	<u>-Fraxinus pennsylvanica</u>	+3-	#	-Dead-	-Dead-	0	0
-50-	Green Ash	Fraxinus pennsylvanica	:	=				0	0	134	Hackberry	Celtis occidentalis	20	1	Fair	Deciduous	0	0
51 52	American Elm Eastern Cottonwood	Ulmus americana Populus deltoides	28	1	Fair Poor	Deciduous Deciduous		0	0	135 136	Green Ash White Pine	<u>Fraxinus pennsylvanica</u> Pinus strobus	14,14 12	<u>2</u> 1	Dead Fair	- Dead- Coniferous	0	0
53	Eastern Cottonwood	Populus deltoides	34	1	Poor	Deciduous		0	0	137	White Pine	Pinus strobus	6	1	Fair	Coniferous	0	0
54	Red Oak	Quercus rubra	8	1	Fair	Deciduous		0	0	138	Bradford Pear	Pyrus calleryana	8	1	Fair	Deciduous	0	0
55 56	Shagbark Hickory American Elm	Carya ovata Ulmus americana	7	1	Fair Fair	Deciduous Deciduous		0	0	139 140	White Pine White Pine	Pinus strobus Pinus strobus	8	1	Good Good	Coniferous Coniferous	0	0
50	Shagbark Hickory	Carya ovata	8,8	2	Good	Deciduous		0	0	140	White Pine White Pine	Pinus strobus Pinus strobus	9 7	1	Good	Coniferous	0	0
58	American Elm	Ulmus americana	8	1	Good	Deciduous		0	0	142		— Fraxinus americana—	-13-	=	-Dead-	-Dead-	0	0
59 60	Red Oak	Quercus rubra	16	1	Good	Deciduous		0	0	143 144	White Ash	Fraxinus americana	13	+	-Dead-	-Dead-	0	0
60 61	Red Oak Red Oak	Quercus rubra Quercus rubra	16	1	Fair Fair	Deciduous Deciduous		0	0	144 145	White Ash Red Oak	Fraxinus americana Quercus rubra	12 17	1 1	Good	Dead Deciduous	0	0
-62	Green Ash	Fraxinus pennsylvanica	: =8=		-Dead-	-Dead-		0	0	146	White Pine	Pinus strobus	7	1	Good	Coniferous	0	0
-63		Fraxinus pennsylvanica		=	-Dead-	-Dead-		0	0	147	White Pine	Pinus strobus	10	1	Good	Coniferous	0	0
64 - 65 -	Sugar Maple Green Ash	Acer saccharum	14 : 12	1	Fair Dead	Deciduous Dead		0	0	148 149	White Pine White Pine	Pinus strobus Pinus strobus	7 8	1	Good Good	Coniferous Coniferous	0	0
-63 66	Shagbark Hickory	Carya ovata	7	1	Good	Deciduous		0	0	149	White Pine White Pine	Pinus strobus Pinus strobus	8	، 1	Good	Coniferous	0	0
67	Shagbark Hickory	Carya ovata	7	1	Good	Deciduous		0	0	151	White Pine	Pinus strobus	8	1	Good	Coniferous	0	0
-68-		-Fraxinus pennsylvanica	: 7	=	-Dead-	-Dead-		0	0	152	White Pine	Pinus strobus	9	1	Good	Coniferous	0	0
69 70	American Elm Red Oak	Ulmus americana Quercus rubra	6 16	1	Poor Good	Deciduous Deciduous		0	0	153 154	White Pine Norway Spruce	Pinus strobus Picea abies	8 10	1 1	Good Good	Coniferous Coniferous	0	0
71	Shagbark Hickory	Carya ovata	8	1	Good	Deciduous		0	0	154	Norway Spruce	Picea abies	11	1	Good	Coniferous	0	0
72	Green Ash	Fraxinus pennsylvanica		=	-Dead-	-Dead-		0	0	156	White Ash	— Fraxinus americana—	+3-	#	-Dead-	-Dead-	0	0
73		<u>Fraxinus pennsylvanica</u>		7	-Dead-	-Dead-		0	0	157	Hackberry	Celtis occidentalis	13	1	Fair	Deciduous	0	0
74 75	Shagbark Hickory Shagbark Hickory	Carya ovata Carya ovata	8,6,6 20	<u> </u>	Good Good	Deciduous Deciduous		0	0	158 159	Hackberry White Ash	Celtis occidentalis Fraxinus americana	7	1	Good Dead	Deciduous Dead	0	0
76	Shagbark Hickory	Carya ovata	6	1	Fair	Deciduous		0	0	1 60	White Ash				-Dead-	-Dead-	0	0
77	Red Oak	Quercus rubra	14	1	Good	Deciduous		0	0	161			8,7	2	-Dead-	-Dead-	0	0
78 70		<u>Fraxinus pennsylvanica</u>		1	-Dead-	-Dead-		0	0	162	White Oak	Quercus alba	19	1	Fair	Deciduous	0	0
79 80	Red Oak Shagbark Hickory	Quercus rubra Carya ovata	10 6	1	Good Good	Deciduous Deciduous		0	0				Total Inches Rem Total Inches To b		excludes de	ad/ poor cor	ndition trees)	<u>51</u> 51
81	Red Oak	Quercus rubra	7	1	Good	Deciduous		0	0				Number of 2.5"	•	•		•	20.4
	Green Ash	Fraxinus pennsylvanica	: _9_	=	-Dead-	-Dead-		0	0									1
-82-		• • •				· · · · ·	1	0										
82 83 84	American Elm Red Oak	Ulmus americana Quercus rubra	13	1	Fair Good	Deciduous Deciduous		0	0									

REVISIONS	MARK DATE DESCRIPTION
	SCHOTTENSTEIN REAL ESTATE GROUP
CITY OF POWELL, DELAWARE COUNTY, OHIO	PRELIMINARY DEVELOPMENT PLAN FOR POWELL GRAND EXHIBIT "J" TREE SURVEY DATA
D	THE Evans, Mechwart, Hambleton & Tilton, Inc. Evans, Mechwart, Hambleton & Tilton, Inc. Engineers • Surveyors • Planners • Scientists 5500 New Albany Road, Columbus, OH 43054 Phone: 614.775.4500 Toll Free: 888.775.3648 emht.com
JC	CALE None DB NO. 20142045 HEET J-2

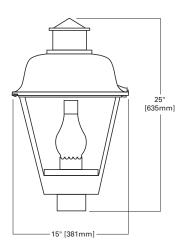
	LEGEND
Dead	Dead Trees


PRELIMINARY
NOT TO BE USED FOR CONSTRUCTION

PLAN SET DATE MAY 20, 2015

Round Tapered Composite Tuff-Poles®

Tenon Top and Capped Direct Burial and Anchor Base


ANCHOR BASE: Cast A356-T6 aluminum, polyurethane coated to match pole color.

Hot dipped galvanized steel anchor bolts complete with nuts (2) and washers (2) are supplied standard $\binom{5}{8}$ x 21" x 3", 1" x 30" x 4", or 1¼" x 36" x 6" depending on the pole specified).

Shakespeare Composite Structures • Round Tapered Tuff-Poles[®] • Page 20

LXD DAYFORM LEXINGTON

POST-TOP AREA LUMINAIRE

TERMINAL BLOCK

Terminal block standard.

EPA [Effective Projected Area]:

MOUNTING

25 lbs. [11 kgs.]

1.7

SPECIFICATION FEATURES

HOUSING

Die-cast aluminum base housing. Standard color is black. Other finish colors available. Consult your Streetworks Representative. 1" ANSI wattage/source label.

TOP

Hinged die-cast aluminum top with cupola cover.

REFLECTOR

Anodized aluminum reflector with field adjustable socket.

ORDERING INFORMATION

SAMPLE NUMBER: LXD70SR2334

PRODUCT FAMILY LXD=Dayform Lexington LAMP TYPE ¹ M=Metal Halide ² P=Pulse Start Metal Halide S=High Pressure Sodium

H= tal Halide N= Sodium R=

REFRACTOR

CHIMNEY

SCREWS

STARTER

Plug-in starter.

Clear acrylic refractor panels.

Captive retaining screw.

Decorative glass chimney and brass holder.

BALLAST TYPE ¹ H=Reac./HPF ³ N=Hi. Reac./NPF R=Reac./NPF DISTRIBUTION 22=Type II 33=Type III

VOLTAGE 1

2=120V

N COLORS (add as suffix) AP=Grey BZ=Bronze WH=White

Self-aligning pole-top fitter fits 2 3/8" and 3" 0.D. tenons.

Square headed 1 1/4" polymer coated mounting bolts.

SHIPPING DATA [Approximate Net Weight]:

OPTIONS (See Below)

OPTIONS [Must be ordered in alphanumeric order]

LAMP

WATTAGE

70=70W

10-100W

15=150W

OPTIONS (add as suffix)

1=Single Fused, Internally Mounted (120 or 277V) 4=NEMA Photocontrol Receptacle L=Lamp Included P=Polycarbonate Lens Panels S=Snap Latches for Toolless Lamp Replacement U=UL/CSA Listed

Exhibit K - Lighting Information

NOTE: 1 Refer to technical section for lamp/ballast/voltage compatibility 2 Medium-base porcelain socket standard 3 High Pressure Sodium only 4 Specifications and dimensions subject to change without notice

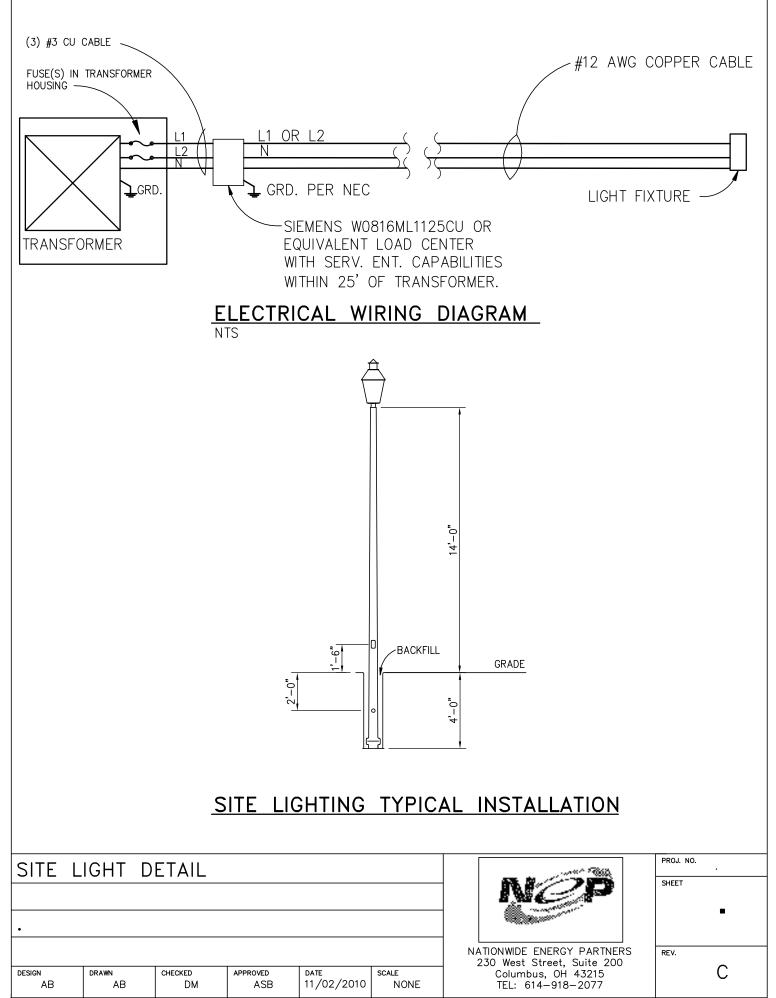


Exhibit K - Lighting Information

MEMO

Date:	May 18, 2015
То:	City of Powell
From:	Patricia Brown, PE
Subject:	Powell Grand Exhibit "M" – Existing & Proposed Easements
Copies:	Schottenstein Real Estate Group
Copies:	Schottenstein Real Estate Group

The following is a summary of the easements and right-of-way for the above referenced project located at the southeast corner of the intersection of Sawmill Parkway and Seldom Seen Road.

Existing Easements & Right-of-Way

An ALTA/ACSM Land Title Survey was prepared for the entire property, refer to Exhibit "B" – ALTA survey. On the north side of the subject property, right-of-way and easements were dedicated with the development of a previous project that was not completed. The existing 60' R/W for Revere Court will be vacated with the development for this project. The existing 20' Sanitary Easement, Item 31 on the ALTA survey, will also be vacated. All remaining existing easements indicated on the ALTA survey will remain in place.

Proposed Easements & Right-of-Way

A proposed 60' R/W will be dedicated for the extension of Bunker Lane to Sawmill Parkway as indicated in Exhibit "E" – Preliminary Development Plan. The coordination of proposed sanitary and storm sewer easements will be established with the Final Engineering Plans.

A legacy of experience. A reputation for excellence.

5500 New Albany Road, Columbus, OH 43054 • Phone 614.775.4500 • Fax 614.775.4800 Columbus • Charlotte • Cincinnati • Indianapolis embt.com

A legacy of experience. A reputation for excellence.

5500 New Albany Road Columbus, Ohio 43054 Phone: 614.775.4500 Fax: 614.775.4800 Toll Free: 1-888-775-EMHT

emht.com

2014-2045

POWELL GRAND SITE TRAFFIC IMPACT STUDY

Schottenstein Real Estate Group/ Margello Development

June 4, 2015

Engineers

Surveyors

Planners

Scientists

Traffic Impact Study

For Powell Grand Site

Sawmill Parkway and Seldom Seen Road

Prepared For: Schottenstein Real Estate Group / Margello Development 2 Easton Oval Columbus, Ohio 43219

> Prepared By: EMH&T 5500 New Albany Road Columbus, Ohio 43054 Phone: 614-775-4500 Fax: 614-775-4800

> > June 4, 2015

The traffic engineering data, analysis, findings, and recommendations contained herein and originally produced by EMH&T have been prepared in accordance with accepted Engineering practice and represent anticipated future conditions to the best of our knowledge and belief.

Douglas A. Bender, PE, PTOE For EMH&T Date

© EMH&T, 2014 All Rights Reserved

TABLE OF CONTENTS

1.0		1
2.0	PROPOSED DEVELOPMENT AND ACCESS PLAN	1
3.0	EXISTING STUDY AREA CONDITIONS	3
4.0	DATA COLLECTION	3
5.0	TRAFFIC VOLUME PROJECTIONS	
	5.1 Site Traffic Volumes	
	5.2 2016 No Build Traffic Volumes	8
	5.3 2016 Build Traffic Volumes	8
	5.4 2036 No Build Traffic Volumes	8
	5.5 2036 Build Traffic Volumes	8
6.0	TRAFFIC ANALYSES	13
	6.1 Traffic Signal Warrants	
	6.2 Turn Lane Warrants	
	6.3 Turn Lane Length Calculations	14
	6.4 Intersection Capacity Analyses	14
7.0	CONCLUSION AND RECOMMENDATIONS	19

COI	NCLUSION AND RECOMMENDATIONS	19
7.1	Site Mitigation Improvements	20
	No Build (Non-Site) Improvements	

TABLES

TABLE 1:	Existing Zoning Trip Generation Results	5
	Expected Trip Generation – Powell Grand Site	
TABLE 3:	Signal Warrant Analysis Results	.13
TABLE 4:	2016 AM/PM Peak Capacity Analysis Results	.17
	2036 AM/PM Peak Capacity Analysis Results	

FIGURES

FIGURE 1:	Site Location Map	2
	Existing Study Area Conditions	
FIGURE 3:	Global Trip Distribution	7
FIGURE 4:	2016 Traffic Volumes - AM Peak Hour	9
FIGURE 5:	2016 Traffic Volumes - PM Peak Hour	10
FIGURE 6:	2036 Traffic Volumes - AM Peak Hour	11
FIGURE 7:	2036 Traffic Volumes - PM Peak Hour	12
FIGURE 8:	2016 Recommended Improvements	22
FIGURE 9:	2036 Expected Future Conditions	23

EXHIBITS

Exhibit 1: Site Plan

APPENDICES

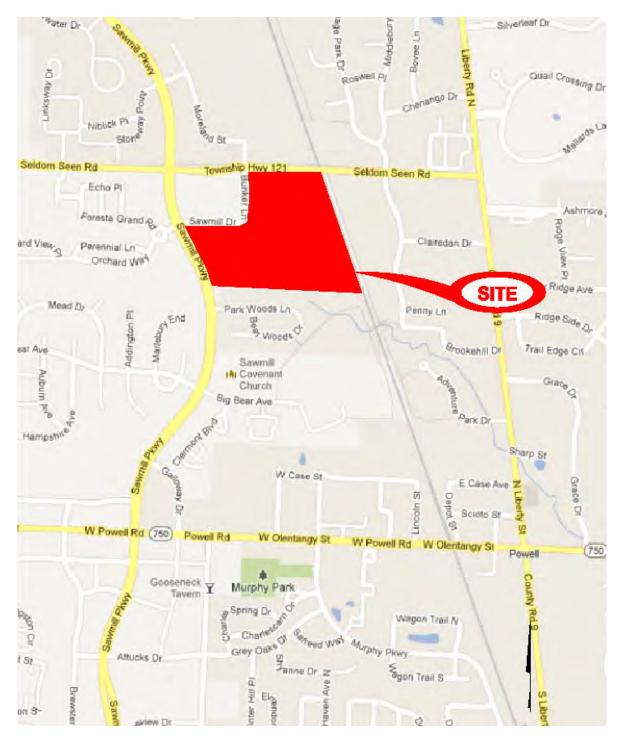
APPENDIX A:	MOU/Data Collected
APPENDIX B:	Traffic Volume Calculations/Trip Generation Data
APPENDIX C:	Signal Warrant Analyses
APPENDIX D:	Turn Lane Warrants/Length Calculations
APPENDIX E:	Capacity Analysis Reports – 2016
APPENDIX F:	Capacity Analysis Reports – 2036

1.0 INTRODUCTION

This study has been prepared to determine the transportation impact of developing the Powell Grand senior living site located in the southeast quadrant of the Sawmill Parkway/Seldom Seen Road intersection in Delaware County, Ohio as illustrated in **Figure 1**.

A previous project initiation meeting was held for this site on April 24, 2014 for a different developer and site plan with the following in attendance: Doug Riedel, John Piccin, Rob Riley and Mike Love with the Delaware County Engineer's Office, as well as Jeff Strung and Doug Bender with EMH&T. A previous memorandum of understanding (MOU) dated May 1, 2014 was prepared based on that meeting but has been subsequently updated for this new user and site plan. The updates to the MOU were based on email correspondence and a newly drafted MOU dated March 23, 2015. The MOU approved as the scope for this study update on March 30, 2015, and is included for reference in **Appendix A**.

2.0 PROPOSED DEVELOPMENT AND ACCESS PLAN


Site development consists of 308 senior living units as well as a 50,000 square feet of office building space. Both existing access points to the site will remain, including one access to Sawmill Parkway via Sawmill Drive and one access to Seldom Seen Road via Bunker Lane. The study will also consider a new full movement, signalized access to Sawmill Parkway that will be coupled with restricting current Sawmill Drive access to right-in/right-out only operation. The proposed site layout is illustrated in **Exhibit 1**. Site access points are listed below for clarification:

• Sawmill Parkway

- Sawmill Drive (existing full movement, restricted to right-in/right-out upon Site Drive 1 completion)
- Site Drive 1 (proposed full movement, proposed signal)
- Seldom Seen Road
 - Bunker Lane (existing full movement, existing stop control to remain)

All vehicular circulation within the site is proposed on private roadways. At the time of this writing this includes extensions of Sawmill Drive and Bunker Lane as well as the addition of Site Drive 1 from its intersection with Sawmill Parkway into the property. The existing portions of Sawmill Drive and Bunker Lane will remain public, as they are today and the extensions of both of these roadways into the site are planned to be public roads as well. Some variances/adjustments to parking requirements may arise along the new portions of these roadways.

FIGURE 1: Site Location Map

3.0 EXISTING STUDY AREA CONDITIONS

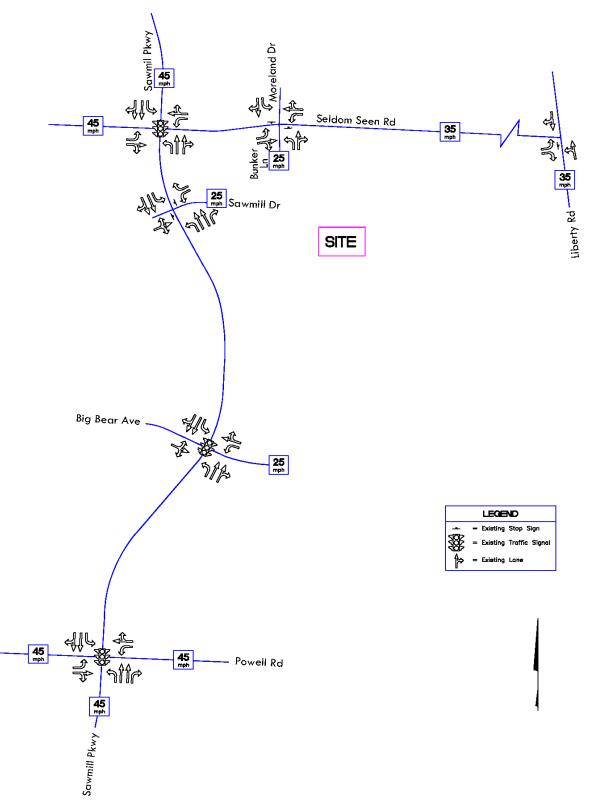
The area of influence identified for this study includes the following intersections:

- Sawmill Parkway/Powell Road (SR 750)
- Sawmill Parkway/Big Bear Avenue
- Sawmill Parkway/Sawmill Drive (convert to Right-in/Right-out in site "Build" scenarios)
- Sawmill Parkway/Seldom Seen Road
- Seldom Seen Road/Bunker Lane
- Seldom Seen Road/Liberty Road
- Site Access to Sawmill Parkway (proposed full movement signalized intersection including future west leg)

A schematic representation of existing study area conditions has been documented in **Figure 2** and described below in further detail.

Sawmill Parkway is a four-lane, north/south Major Arterial roadway with a posted speed limit of 45 miles per hour. Seldom Seen Road is a Minor Collector roadway providing three lanes with a speed limit of 45 miles per hour in the vicinity of the Sawmill Parkway intersection. The speed limit on Seldom Seen Road transitions to 35 mph east of the CSX railroad tracks at the east edge of the site. Liberty Road is a two-lane, Minor Arterial roadway with a posted speed limit of 35 miles per hour. Seldom Seen Road intersects Liberty Road under stop control. Sawmill Parkway intersects Seldom Seen Road under traffic signal control.

4.0 DATA COLLECTION


Manual turning movement counts were previously conducted by EMH&T personnel at the following intersections on November 7th and 8th, 2012, from 7 AM to 9 AM and 4 PM to 6 PM:

- Sawmill Parkway/Powell Road (SR 750)
- Sawmill Parkway/Big Bear Avenue
- Sawmill Parkway/Sawmill Drive
- Sawmill Parkway/Seldom Seen Road
- Seldom Seen Road/Bunker Lane

All counts were conducted on weekdays to represent average conditions, including the Seldom Seen Road/Liberty Road intersection on November 13, 2012 from 7 AM to 6 PM. An additional count was performed there December 13, 2012 from 6 PM to 8 PM to gather added hours of data. Traffic count data used in this study are included for reference in **Appendix A**.

FIGURE 2: Existing Study Area Conditions

A legacy of experience. A reputation for excellence.

5.0 TRAFFIC VOLUME PROJECTIONS

The impact of the Powell Grand development on the adjacent street network was determined by combining estimated site-generated trips with background traffic volumes and analyzing the street system under full build conditions. Traffic volumes were projected for the weekday morning and afternoon peak hour based on the development plan shown in **Exhibit 1**. Detailed traffic volume calculations have been included in **Appendix B** and are discussed in Section 5.1 below.

The proposed Powell Grand development represents a substantial decrease in the traffic generating potential of this property. This site is currently zoned for high density retail development that would generate traffic five times what is currently being proposed for the site. Trip generation potential for the current zoning on this site was estimated using ITE's Land Use Code 820 (Shopping Center) for a 400,000 S.F. retail center, resulting in 1,517 afternoon peak hour trip ends, which is illustrated in **Table 1** below:

Time Period	Trip Type	Entering	Exiting	Total	
ADT	Total	8,361	8,361	16,722	
	Primary	200	122	322	
AM Peak Hour	Pass-By	31	31	62	
	Total	231	153	384	
	Primary	539	584	1,123	
PM Peak Hour	Pass-By	197	197	394	
	Total	736	781	1,517	

TABLE 1: Existing Zoning Trip Generation Results

A background traffic growth rate was requested from the Mid-Ohio Regional Planning Commission (MORPC) and was submitted to the County Engineer for review and approval on January 10, 2013. The recommended growth rates for the study area provided by MORPC are:

- Sawmill Parkway- 3%
- Powell Road- 2%
- Seldom Seen Road- 2.5%
- Liberty Road- 3%

Opening day and design year, morning and afternoon peak hour traffic volumes were projected for a single build scenario that includes all proposed access with full development of the site. Opening Year for this study is 2016 and the Design Year is 2036. Traffic data was developed for the following scenarios:

- 2016 Background (site "no-build" condition, includes 'other development traffic')
- 2016 Full Build of Site with Proposed Access and warranted roadway improvements
- 2036 Background (site "no-build" condition, includes 'other development traffic')
- 2036 Full Build of Site with Proposed Access and warranted roadway improvements

5.1 Site Traffic Volumes

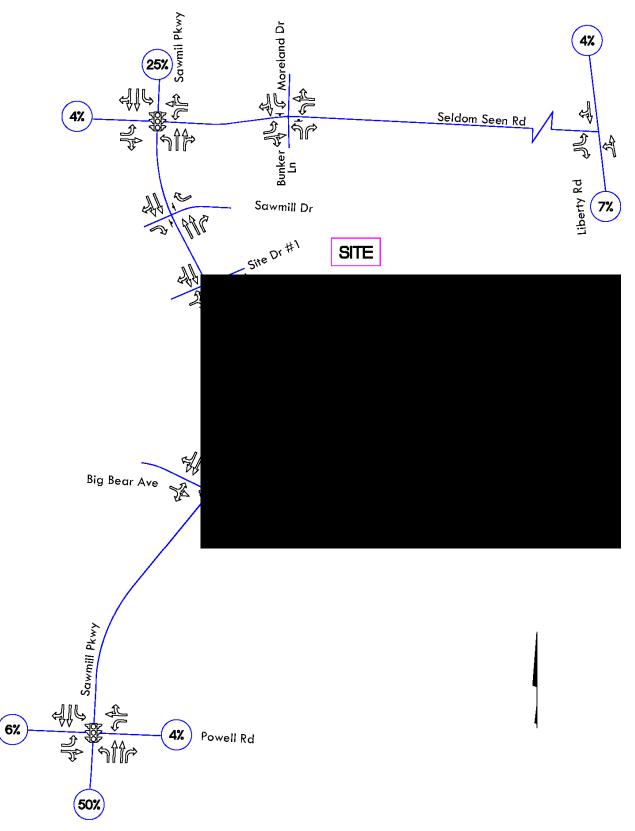
Morning and afternoon weekday peak hour site generated trip ends for the proposed development were forecast using trip generation rates for land use code #251(Senior Adult Housing, Detached) and #710 (Office) as published in <u>Trip Generation</u>, 9th Edition (Institute of

Transportation Engineers, 2012). Trip generation for the residential component was based on the 'detached' senior housing rates since the exact mix of housing type that will be build it undetermined and the detached rate is more conservative than the attached senior living rate. Site generated trip ends were distributed to the adjacent street network according to patterns observed in the manual traffic count procedure and based on engineering judgment regarding likely origins and destinations of trips during peak hours.

Site generated trips were added to background traffic to determine full build traffic volumes. All site traffic was viewed as primary trip ends so no pass-by traffic was calculated for these land uses. **Table 2** below illustrates the expected trip generation for the Powell Grand site. Additionally, a planned daycare at the Sawmill Drive intersection with Sawmill Parkway was added as 'other development' traffic to the background condition. Detailed trip generation data for the site as well as other development (daycare and 5-acre office site) is included in **Appendix B** for reference. The proposed site is expected to generate 238 PM Peak trip ends while the current zoning for the site would permit high density retail that could generate up to 1,517 trip ends in the same PM Peak hour.

	Square						
Land Use	Feet	ITE	Time	ITE	Total	Trips	Trips
	or Units	Code	Period	Formula	Trips	Entering	Exiting
Senior Adult Housing	308	251	ADT	Ln(T)=0.89Ln(x)+2.06	1,288	644	644
(Detached)	units		AM Peak	T=0.17(x)+29.95	82	29	53
(Use for Condo Communities)			PM Peak	Ln(T)=0.75Ln(x)+0.35	104	63	41
Office	50,000	710	ADT	Ln(T)=0.76Ln(x)+3.68	776	388	388
	sf		AM Peak	Ln(T)=0.80Ln(x)+1.57	110	97	13
			PM Peak	T=1.12(x)+78.45	134	23	111
			ADT		2,064	1,032	1,032
Total			AM Peak		192	126	66
			PM Peak		238	86	152

TABLE 2: Expected Trip Generation – Powell Grand Site


Trip distribution assumptions are based on the traffic count data, travel patterns in the study area and input from the Delaware County Engineers Office. The expected gateway distributions are listed below and included on the attached **Figure 3**:

- From/to Sawmill Parkway north 25%
- From/to Sawmill Parkway south 50%
- From/to Seldom Seen Road west 4%
- From/to Liberty Road north 4%
- From/to Liberty Road south 7%
- From/to Powell Road east 4%
- From/to Powell Road west 6%

Proposed trip distribution and trip assignments were previously approved by the County Engineer under a prior traffic study and were re-approved on May 7, 2015, with the current Memorandum of Understanding. Global trip distribution percentages are illustrated on **Figure 3** and detailed trip assignments for site traffic are included in **Appendix B** for reference.

FIGURE 3: Global Trip Distribution

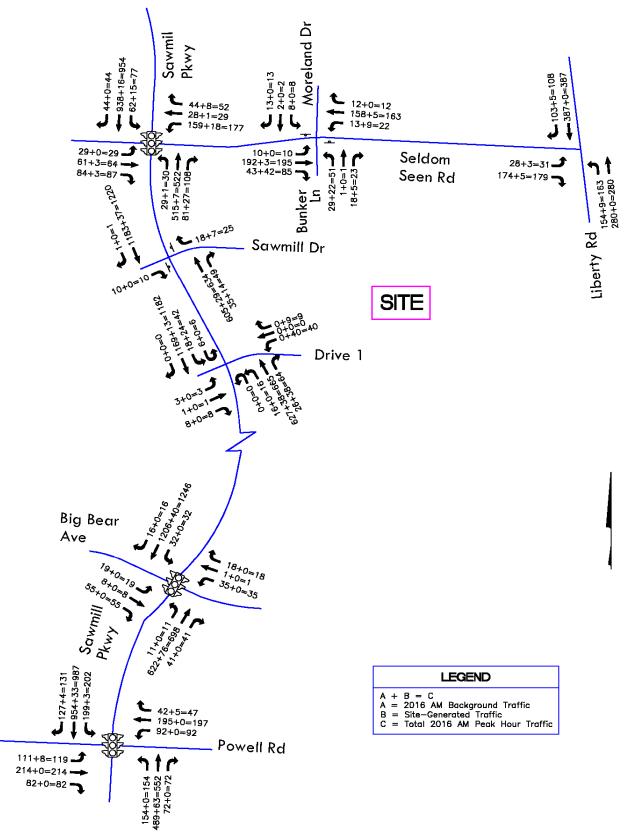
5.2 2016 No Build Traffic Volumes

Opening day 2016 background traffic volumes were derived by expanding counted traffic volumes with the MORPC recommended annual growth rate applied to Sawmill Parkway (3%), Seldom Seen Road (2.5%), Liberty Road (3%) and Powell Road (2%). Opening year 2016 peak hour traffic is illustrated on **Figures 4** and **5**. Detailed traffic volume assignments are provided for reference in **Appendix B**.

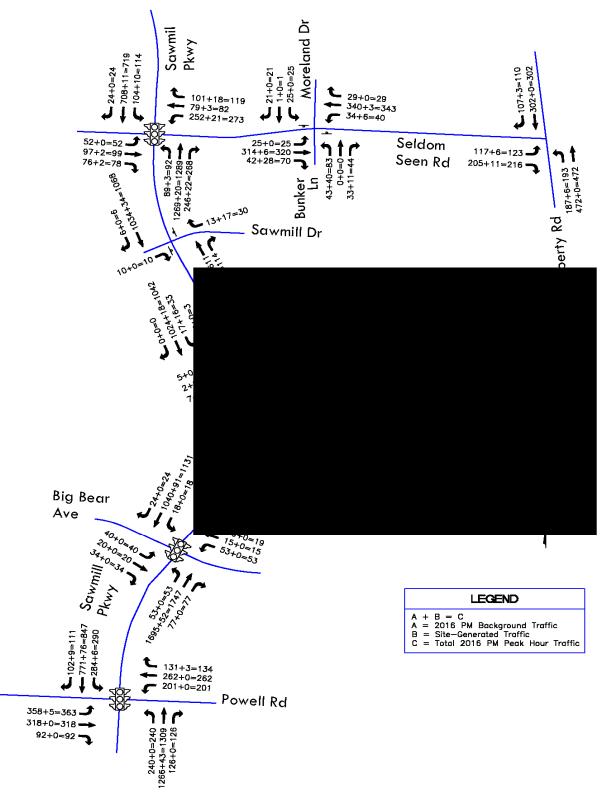
5.3 2016 Build Traffic Volumes (Full Build of Site with Proposed Access)

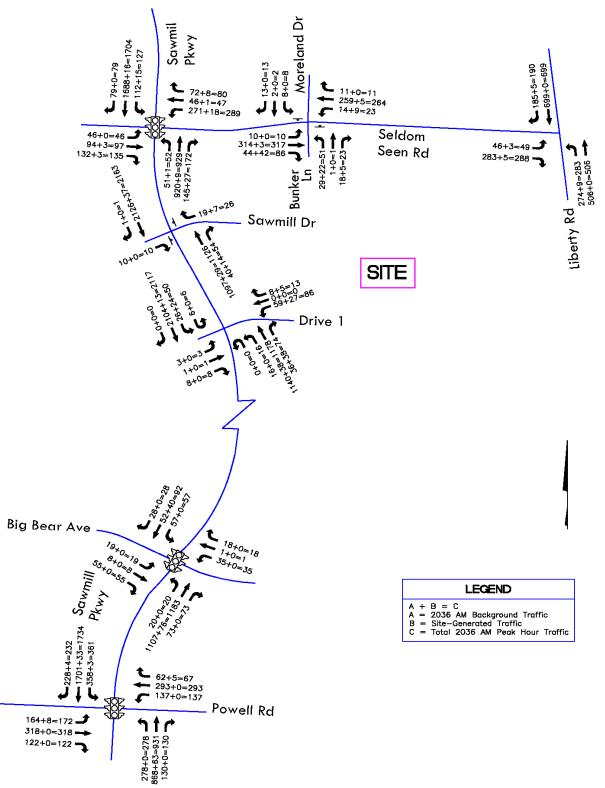
Traffic volumes developed per section 5.2 above were used as No Build Conditions and site generated trips for Powell Grand were added. Opening year 2016 Build peak hour traffic is illustrated on **Figures 4** and **5** and detailed traffic volume assignments are included for reference in **Appendix B**.

5.4 2036 No Build Traffic Volumes


Design year 2036 background traffic volumes were derived by expanding counted traffic volumes with the MORPC recommended annual growth rate applied to Sawmill Parkway (3%), Seldom Seen Road (2.5%), Liberty Road (3%) and Powell Road (2%). Projected design year 2036 peak hour traffic is illustrated on **Figures 6** and **7**. Detailed traffic volume assignments are provided in **Appendix B**. Comparing 2036 background volumes to 2016 background volumes indicates that MORPC estimates predict traffic volumes on Sawmill Parkway will grow by around 75% irrespective of site development. Two-way volumes passing by the site during the afternoon peak hour are projected to increase by over 2000 vehicles per hour according to the MORPC model which reflects an extension of Sawmill Parkway northwest to US 42.

5.5 2036 Build Traffic Volumes (Full Build of Site with Proposed Access)


Site generated traffic was added to 2036 background traffic volumes to determine 2036 Build volumes. Projected design year 2036 peak hour traffic is illustrated on **Figures 6** and **7**. Detailed traffic volume assignments are provided for reference in **Appendix B**.



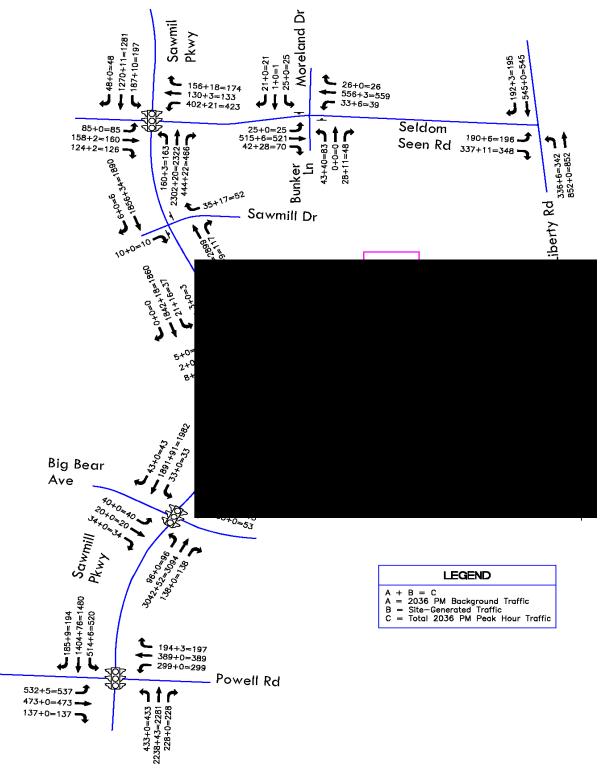

FIGURE 5: 2016 Traffic Volumes - PM Peak Hour

FIGURE 6: 2036 Traffic Volumes - AM Peak Hour

FIGURE 7: 2036 Traffic Volumes - PM Peak Hour

6.0 TRAFFIC ANALYSES

Weekday morning and afternoon peak hour traffic for each scenario was used to analyze the existing/future street network and proposed access plan. Analyses and results are detailed in the following sections and include traffic signal warrants, turn lane warrants, turn lane length calculations and intersection capacity analyses. Delaware County Engineer personnel provided local and system timing for the Sawmill Parkway signal system which includes all the study area intersections in that system. Considering the priority on coordinating north/south through movement in the Sawmill Parkway corridor, approach delays were not necessarily balanced in the analyses. Results of those analyses are provided in the following sections.

Opening Day conditions at the Sawmill Parkway/Powell Road intersection account for an Ohio Department of Transportation (ODOT) project to widen Powell Road to two through lanes in each direction, add right turn lanes on the southbound and eastbound approaches, and create dual left turn lanes on the northbound, southbound and eastbound approaches. This is a more significant improvement than discussed in the past and ODOT District 6 staff indicated the planned improvements are scheduled to be awarded for construction in mid-2015.

6.1 Traffic Signal Warrants

Traffic signal warrants were assessed using thresholds established by the <u>Ohio Manual of Uniform</u> <u>Traffic Control Devices</u> § 4C (Ohio Department of Transportation, 2012) (OMUTCD). At the Seldom Seen Road/Liberty Road intersection, fourteen hour count data was compared to volume criteria specified in Warrant 1 (Eight-Hour Warrant) as well as Warrant 2 (Four-Hour Warrant). The intersection satisfies warrant criteria for signalization regardless of site development in 2016.

At the Site Drive 1/Sawmill Parkway intersection, volume projections for the intersection indicate a traffic signal is warranted by 2036 Build conditions as a two-lane, side street approach. However, the Site Drive 1 intersection will meet warrants in the 2016 Build condition if just the Drive 1 left turn volume is compared to the single lane approach criteria. For that reason, the signal is expected to be warranted in the 2016 Build condition. At the Bunker Drive/Seldom Seen Road intersection, a traffic signal is not predicted to be warranted under future No Build or Build conditions, as estimated by the projected eighth-high hour volumes expected there. The signal warrant worksheets for each location are provided for reference in **Appendix C. Table 3** below illustrates the results of the warrant analyses.

Intersection	Warrant 1 Eight-Hour	Warrant 2 Four-Hour
Seldom Seen Road/Liberty Road (Background)	YES (2016)	YES (2016)
Sawmill Pkwy/Drive 1 (Build)	YES (2016)	N/A
Seldom Seen Rd/Bunker Dr (Build)	NO (2036)	NO (2036)

TABLE 3: Signal Warrant Analysis Results

6.2 Turn Lane Warrants

Left and right turn lane warrants were evaluated at Seldom Seen Road/Bunker pursuant to the requirements set forth in the Delaware County Traffic Impact Study Standards. An eastbound right turn lane is warranted on Seldom Seen Road at Bunker Lane and a northbound right turn lane is warranted on Sawmill Parkway at Drive 1 as site-related improvements in 2016. Turn lane warrant charts are provided for reference in **Appendix D**.

6.3 Turn Lane Length Calculations

Turn lane lengths were calculated for recommended turn lanes based on procedures outlined in the Location and Design Manual, Volume 1 (Ohio Department of Transportation, 2012). Results were used to size warranted turn lanes at the planned site driveways and at all needed turn lanes due to capacity. Turn lane length results are illustrated on **Figure 8** and **Figure 9**. Detailed lane-sizing calculations are provided in **Appendix D**. It should be noted that the existing northbound right turn lane at Sawmill Parkway/Sawmill Drive intersection is approximately 250 feet (deceleration taper included) and the required length is 250 feet in year 2036 due to addition of site traffic. Therefore, it is not necessary to make improvements to this turn lane.

6.4 Intersection Capacity Analyses

Synchro v.8 was used to evaluate operational characteristics of study area intersections. The analytical focus of the study was on investigating intersection capacity at the locations listed above. Capacity analyses used Synchro software to identify any degradation of intersection operations due to the addition of site generated traffic. The County Engineer provided current timings and operational data for the Sawmill Parkway signal system. This data was used for our capacity analyses, and updated volumes and intersection geometry were used as needed to reflect the analysis scenarios described above.

Levels of Service (LOS) are expressed in terms of letter grades with LOS A representing the highest quality traffic flow and minimal delay, and LOS F representing poor traffic operations and significant delay. Synchro analyses have been summarized for each intersection in **Table 4** and **Table 5**, including both morning and afternoon peak hours. The discussion below focuses on the PM Peak Hour results as that hour presents higher traffic volumes overall and controls the results. Detailed capacity analysis reports for 2016 conditions are provided in **Appendix E**. Detailed capacity analysis reports for 2036 conditions are provided in **Appendix F**.

6.4.1 Year 2016 No Build Conditions

The signalized intersection of Sawmill Parkway/Powell Road will be improved by ODOT starting in 2015 and expected to be complete by 2016. Planned improvements there include dual leftturn lanes northbound, southbound and eastbound, an additional eastbound and westbound through lane on Powell Road, and right turn lanes added on the eastbound and southbound approaches to the intersection. These opening year 2016 improvements have been included as 'background' conditions for 2016 analyses. With these improvements, the intersection is predicted to operate at LOS D or better.

The Sawmill Parkway/Big Bear Avenue signalized intersection is expected to operate at acceptable levels of service (LOS D or better). The Sawmill Drive intersection with Sawmill Parkway is currently stop-controlled with all movements permitted. The eastbound and westbound approaches operate at a LOS F during the PM peak hour. The Sawmill Parkway/Seldom Seen Road signalized intersection is expected to operate at overall LOS D, just past the LOS C threshold.

The Seldom Seen Road/Bunker Lane/Moreland Drive intersection is expected to operate at acceptable levels of service (LOS C or better) in its existing configuration under side street stop control. The Seldom Seen Road/Liberty Road currently meets warrants for a traffic signal and a northbound left turn lane. With those improvements assumed in the No Build condition, the intersection is predicted to operate at acceptable level of service.

6.4.2 2016 Build Conditions

The Sawmill Parkway/Powell Road intersection under build conditions was analyzed with planned ODOT improvements, consistent with the background analysis discussed above. With these improvements, the build condition is also predicted to operate at overall acceptable LOS D for the intersection. Similarly, the signalized Sawmill Parkway/Big Bear Avenue intersection is expected to operate at acceptable levels similar to the background 2016 condition.

The Sawmill Drive intersection with Sawmill Parkway will be converted to right-in/right-out operation and operate at LOS C under Build conditions. The Villages at Sawmill Parkway will construct the right-in/right-out improvements on the east side of Sawmill Parkway as part of the site construction. Site improvements will also connect to a new traffic signal at the Site Drive 1 intersection with Sawmill Parkway, all in support of the County access management plan for this area. Timing of the right-in/right-out improvements and connection to the traffic signal on the west side of Sawmill Parkway is unknown as that side of the roadway is controlled by a different property owner. The Sawmill Parkway/Drive 1 intersection is predicted to operate at LOS A overall with a left turn only lane and a through/right lane to serve expected site traffic volumes.

The Sawmill Parkway/Seldom Seen Road signalized intersection improves slightly to LOS C in the Build condition with existing lane assignments and signal phasing.

The Seldom Seen Road/Bunker Lane/Moreland Drive intersection is expected to operate acceptably with side street left turn movements operating at LOS D or better. Seldom Seen Road at Liberty Road is expected to operate at LOS B under signal control and site "build" conditions.

6.4.3 Year 2036 No Build Conditions

The growth rates provided by MORPC produce more than a 75% increase in Sawmill Parkway traffic over 20 years. The resulting peak hour forecast of over 4,000 vehicles (total of both directions) on Sawmill Parkway is consistent with a daily, ADT volume of 40,000 to 45,000 vehicles. These traffic levels strongly suggest that an added third through lane will be required in each direction on Sawmill Parkway, irrespective of site development. Delaware County <u>Traffic Impact Study Standards</u> state on page 5 "Improvements necessary to accommodate the non-site traffic in the design year at LOS C in non-urban areas or LOS D in urban areas shall be determined even though the developer may not be required to undertake these improvements". Previous

submittals of this study determined additional lanes required to accommodate non-site traffic in the design year of 2036. County comments instructed us to remove those background improvements and perform a strict "no-build" versus "build" comparison on the existing roadway configuration plus committed improvements such as the ODOT project at Sawmill Parkway/Powell Road.

Without further improvements, most Sawmill Parkway intersections in the study area are expected to operate at LOS F in the design year, irrespective of site development. This includes the Sawmill Parkway/Powell Road intersection which is expected to operate at LOS F in the design year even after accounting for the improvements to be built by ODOT starting in 2015. If the overall intersection is not at LOS F (Sawmill Parkway/Big Bear Avenue is at LOS C overall), individual movements or approaches are at LOS F in the Sawmill Parkway corridor.

Seldom Seen Road intersections east of Sawmill Parkway were found to operate more acceptably in the design year background condition with the Bunker Lane/Moreland Drive intersection at LOS E or better and the Seldom Seen Road/Liberty Road intersection at LOS C with warranted turn lane and signal improvements discussed earlier in this report. Full reporting of "no-build" levels of service in the design year have been provided in **Table 5**.

6.4.4 2036 Build Conditions

In accordance with County comments, our "build" analysis returns intersection level of service to "no-build" levels or better. In the Sawmill Parkway corridor, that was achieved by 1) adding a westbound protected/permitted left turn phase at the Sawmill Parkway/Seldom Seen Road intersection and 2) adding an eastbound left turn lane on Big Bear Avenue at Sawmill Parkway by restriping existing pavement. The signalized Drive 1 intersection attained overall LOS D in the 2036 design year but some movements operate poorly, again due to the lack of through lane capacity on Sawmill Parkway. The right-in/right-out operation at Sawmill Parkway/Sawmill Drive is predicted to operate significantly better than in its current condition as a full movement, unsignalized intersection.

In the Seldom Seen Road corridor, the Bunker Lane/Moreland Drive intersection is predicted to operate acceptably overall but the sidestreet left turns are expected to operate poorly in the 2036 design year under stop sign control. As discussed above, this intersection is not predicted to meet signal warrants by the 2036 design year but alternate access is available including the proposed signalized intersection of Sawmill Parkway/Drive 1. The Seldom Seen Road/Liberty Road intersection maintains the No Build level of service for the intersection, but like the no-build condition, would benefit from area-wide through lane capacity along Sawmill Parkway. Please refer to **Table 5** for a detailed summary of results.

A legacy of experience. A reputation for excellence.

TABLE 4: 2016 AM/PM Peak Capacity Analysis Results

			17	ADLE -	t: ZV	JIO A	141/F 141	rear		pacity	Ana	Y 212 L	lesu	115				
Time Period	Scenario	EBLT	EBTH	ЕВКТ	APPROACH	₩вцт	₩втн	WBRT	APPROACH	NBLT	HLBN	NBRT	APPROACH	SBLT	SBTH	SBRT	APPROACH	TOTAL
Sawmill Pkwy	& Powell Rd																	
AM Peak Hour	No Build Build		D/41.3/0.50 D/41.3/0.50									A/6.9/0.09 A/6.9/0.09	B/17.4 B/16.9	A/9.7/0.19 A/9.8/0.21		A/7.6/0.16 A/7.6/0.16		
PM Peak Hour	No Build Build		D/49.6/0.62 D/49.2/0.62				E/66.8/0.82 E/66.6/0.81			E/58.1/0.75 E/58.1/0.75								
Sawmill Pkwy 8	Big Bear Ave																	
AM Peak Hour	No Build Build		D/47.3/0.52 D/47.3/0.52			D/44.4/0.22 D/44.4/0.22	D/43.7 D/43.7		D/44.1 D/44.1	A/0.1/0.03 A/0.1/0.03		A/0.4/0.24 A/0.5/0.27	A/0.4 A/0.5			A/1.0/0.45 A/1.0/0.46		A/3.7 A/3.6
PM Peak Hour	No Build Build		E/56.9/0.59 E/56.9/0.59		,	D/54.0/0.36 D/54.0/0.36	D/51.7 D/51.7		D/53.1 D/53.1	A/2.8/0.12 A/2.9/0.13	A/6.3/0.64 A/6.7/0.66	A/6.4/0.65 A/6.8/0.67	A/6.3 A/6.6	A/4.4/0.09 A/5.0/0.10	A/0.8/0.39	A/0.7/0.39 A/0.9/0.42	A/0.8 A/0.9	A/7.2 A/7.3
Sawmill Pkwy			L/ J0.7/ 0.J7		L/ J0.7	0/ 54.0/ 0.50	0/51.7	/0.25	0/ 55.1	R/ 2.7/ 0.13	A/0.7/0.00	A/0.0/0.0/	A/ 0.0	A) 3.0/ 0.10	A/ 0.7/ 0.42	A/0.7/0.42	N/ 0.7	R/7.3
AM Peak Hour	No Build Build	D/25.9/0.121 N/A	D/25.9/0.121 N/A	D/25.9/0.121 B/14.2/0.027		F/89.5/0.625 N/A		B/10.6/0.04 B/10.8/0.041		B/11.8/0.031 N/A	N/A N/A	N/A N/A	0.3 N/A	A/9.0/0.028 N/A	N/A N/A	N/A N/A	0.2 N/A	N/A N/A
PM Peak Hour	No Build Build	F/99.4/0.416 N/A	F/99.4/0.416 N/A	F/99.4/0.416 B/13.2/0.024		F/1710/3.656 N/A		C/18.1/0.102 C/19.1/0.135		B/11.1/0.06 N/A	N/A N/A	N/A N/A	0.2 N/A	C/15.3/0.058 N/A	N/A N/A	N/A N/A	0.3 N/A	N/A N/A
Sawmill Pkw	y & Drive 1																	
AM Peak Hour	No Build Build		D/42.4/0.02		D/42.2	D/46.9/0.48	D/42.2	/0.09	D/46.4	A/2.4/0.04	A/3.3/0.28	A/3.2/0.28	A/3.2	A/0.5/0.08	A/1.0	0/0.44	A/1.0	A/4.1
PM Peak Hour	No Build Build		D/48.4/0.02		D/47.6	E/56.6/0.62	D/47.8	/0.12	E/55.3	A/3.4/0.08	A/8.5/0.67	A/8.5/0.67	A/8.4	A/7.7/0.19	A/01	3/0.39	A/1.0	A/8.2
awmill Pkwy &					0/ 1/10	2,000,002	5/-1/10	10112	2/00/0		1000000	14 010/010/	77011	, qru juli i	790		79.10	79 012
AM Peak Hour	No Build Build	D/36.5/0.11 D/36.1/0.1	D/49.9 D/50.0			D/35.5/0.59 D/37.6/0.65	D/35.1 D/35.0			B/10.3/0.09 B/10.7/0.09		A/8.8/0.34 A/9.5/0.37	A/8.8 A/9.5	A/9.5/0.13 A/9.9/0.17		B/10.2/0.54 B/10.7/0.55		
PM Peak Hour	No Build Build	D/42.8/0.2 D/42.3/0.21	E/71.9 E/72.8			E/55.9/0.84 E/59.5/0.87	D/43.0 D/43.7			B/13.1/0.23 D/13.2/0.25			,	C/31.8/0.61 B/12.9/0.41	, ,		1	,
Bunker Ln & Se	ldom Seen Rd																	
AM Peak Hour	No Build Build	A/7.6/0.008 A/7.6/0.008	N/A N/A	N/A N/A	0.3 0.3	A/7.8/0.011 A/7.9/0.019	N/A N/A	N/A N/A		B/12.8/0.063 B/14.0/0.121	1 1	1 1		1 1	1 1	1 1	1	N/A N/A
PM Peak Hour	No Build Build	A/8.2/0.186 A/8.2/0.023	N/A N/A	N/A N/A	0.5 0.5	A/8.1/0.031 A/8.3/0.038	N/A N/A	N/A N/A	0.7 0.8	C/22.8/0.186 D/29.7/0.383		B/10.5/0.052 B/10.8/0.071						N/A N/A
Liberty Rd & Se	1	N 0.2/ 0.023	17/2	n/A	viJ	nj 0.0j 0.030	iγA	in/A	0.0	0/211/0000	9/10.0/0.0/1	9/10.0/0.0/1	C/ 23.2	C/ 20.0/ 0.122	P/11.1/0.030		911.7	N/A
AM Peak Hour	No Build Build	C/28.4/0.12 C/28.3/0.12		D/38.0/0.81 D/38.0/0.81			N/A N/A		N/A N/A	A/10.0/0.28 B/10.5/0.30		N/A N/A	A/6.5 A/6.8	N/A N/A		1/0.43 2/0.43	A/6.1 A/6.2	B/11.7 B/12.0
PM Peak Hour	No Build Build	B/16.7/0.37 B/17.0/0.37		C/20.4/0.72 C/21.0/0.73			N/A N/A		N/A N/A	B/11.2/0.38 B/11.7/0.40		N/A N/A	A/8.1 A/8.4	N/A N/A		7/0.46 9/0.46	A/6.7 A/6.9	B/10.2 B/10.6
X/X/X = Overal					-		iy A		ηγA	<i>v</i> /11.//0.40	n/////0.JU	ny A	n/ 0. 4	N/A	A/0.1	/ 00	n/ 0.7	0.01

X/X/X =Overall LOS / Average Delay Per Vehicle/Volume to Capacity Ratio

N/A = Not Applicable, movement does not exist

TABLE 5: 2036 AM/PM Peak Capacity Analysis Results

				ADLE	J: Z	030 A		геак	Ca	Dacity	Analy	7212 K	501	15				
Time Period	Scenario	EBLT	EBTH	EBRT	APPROACH	М ВLT	₩ВТН	WBRT	APPROACH	NBLT	Z BTH	ZBRT	APPROACH	SBLT	SBTH SBTH	SBRT	APPROACH	TOTAL
Sawmill Pkwy	& Powell Rd																	
AM Deale Have	No Build	E/56.3/0.73	D/39.4/0.58	C/31.5/0.34	D/42.4	C/34.6/0.55	D/41.2/0.64	D/41.7/0.65	D/39.6	F/123.8/1.09	B/15.5/0.58	B/10.2/0.18	D/38.5	B/13.8/0.51	F/74.9/1.10	B/10.7/0.30	E/58.9	D/49.1
AM Peak Hour	Build	E/59.6/0.77	D/39.3/0.58	C/31.4/0.33			D/41.2/0.64											
	No Build	F/307.0/1.53	E/79.5/0.96	D/35.2/0.34	F/180.2	F/211.0/1.32	F/199.7/1.27	F/208.5/1.29	F/206.4	F/120.1/1.08	F/250.7/1.48	B/15.2/0.28	F/213.1	F/333.2/1.59	D/46.8/0.96	B/15.6/0.23	F/114.1	F/177.4
PM Peak Hour	Build						F/202.4/1.28											
Sawmill Pkwy 8	& Big Bear Ave																	
	No Build		D/47.3/0.52		D/47.3	D/44.4/0.22	D/43.7	7/0.17	D/44.1	A/1.2/0.11	A/1.0/0.43	A/0.9/0.44	A/0.9	A/0.7/0.14	A/4.6/0.80	A/4.5/0.80	A/4.5	A/4.9
AM Peak Hour	Build		D/47.3/0.52		D/47.3	D/44.4/0.22	D/43.7	7/0.17	D/44.1	A/1.2/0.12	A/1.1/0.46	A/1.0/0.46	A/1.1	A/0.8/0.15	A/5.0/0.81	A/4.9/0.81	A/4.9	A/5.1
	No Build		F/93.7/0.83		F/93.7	E/57.5/0.43	E/55.3	3/0.33	E/56.6	A/9.5/0.45	F/72.4/1.12	F/79.0/1.14	E/73.8	F/85.8/0.58	A/2.5/0.68	A/2.5/0.69	A/3.9	D/48.6
PM Peak Hour	Build		F/93.7/0.83		F/93.7	E/57.5/0.43	E/55.3	3/0.33	E/56.6		F/79.8/1.14						A/4.2	D/52.6
Sawmill Pkwy	& Sawmill Dr																	
AM Dook Hour	No Build	D/25.1/0.06	D/25.1/0.06	D/25.1/0.06	D/25.1	B/13.4/0.05	B/13.4/0.05	B/13.4/0.05	B/13.4	A/0			0	A/0			0	
AM Peak Hour	Build			D/25.7/0.6	D/25.7			B/13.5/0.03	B/13.5	A/0			0	A/0			0	
	No Build	C/21.0/0.05	C/21.0/0.05	C/21.0/0.05	C/21.0	F/58.1/0.36	F/58.1/0.36	F/58.1/0.36	F/58.1	A/0			0	A/0			0	
PM Peak Hour	Build			C/21.4/0.05	C/21.4			F/77.9/0.55		A/0			0	A/0			0	
Sawmill Pkw	y & Drive 1																	
AM Peak Hour		D/44.4/0.02					D/44.3/0.09			A/0.8/0.08	A/0.9/0.43	, ,	A/1.0	A/0.3/0.07	A/3.9/0.76		A/3.8	
	Build	D/42.4/0.02	D/42.0)/0.07	D/42.1	D/47.0/0.49	D/42.	2/0.1	D/46.3	A/3.3/0.08	A/4.6/0.47	A/4.6/0.47	A/4.6	A/2.2/0.16	A/4.7	/0.79	A/4.5	A/5.8
DU D L U	No Build	D/50.5/0.03	D/49.6/0.07	D/49.6/0.07	D/49.9	E/56.3/0.56	D/50.0/0.13	D/50.0/0.13	E/55.3	A/4.2/0.16	F/83.9/1.14	F/85.0/1.14	F/83.5	E/65.8/0.38	A/2.6/0.68	A/2.6/0.68	A/3.3	D/53.6
PM Peak Hour	Build	D/50.9/0.03	D/49.1		D/49.7	F/107.1/0.95	D/50.		F/98.6		F/83.1/1.18			F/93.9/0.67	A/2.8	/0.69	A/4.5	D/54.0
awmill Pkwy &	Seldom Seen Ro																	
AM Peak Hour	No Build	C/34.6/0.17	F/122.	9/1.07		F/159.9/1.20	D/36.8	3/0.39			B/14.2/0.63							
	Build	D/35.6/0.19	F/166.4	4/1.19	F/145.1	F/239.1/1.39	D/39.3	3/0.48	F/177.0	C/24.1/0.36	B/13.1/0.64	B/13.4/0.64	B/13.7	B/11.9/0.39	C/33.8/0.96	D/36.2/0.98	C/33.5	D/51.5
	No Build	D/52.5/0.61	F/259.	1/1.40	F/211.4	F/373.5/1.70	F/81.5	5/0.94	F/252.0	C/22.1/0.64	F/220.5/1.48	F/257.0/1.56	F/227.3	F/231.3/1.35	C/26.9/0.74	C/26.8/0.74	D/52.3	F/181.2
PM Peak Hour	Build	E/55.5/0.68	F/141.		F122.1	F/662.2/2.34	F/100.	/			F/230.7/1.50							
Bunker Ln & Se	ldom Seen Rd																	
AM Peak Hour	No Build	A/7.9/0.008			0.2	A/8.1/0.013			0.4		B/10.7/0.03	1	1 .	1 . 1	1	1	1 .	
7011 COR HOU	Build	A/7.9/0.008			0.2	A/8.3/0.02			0.6	C/19.0/0.18	B/10.9/0.04	B/10.9/0.04	C/16.4	C/17.2/0.03	B/10.9/0.03	B/10.9/0.03	B/13.1	
PM Peak Hour	No Build	A/8.9/0.03			0.4	A/8.8/0.04			0.5		B/12.5/0.08							
Imreaknoo	Build	A/8.9/0.03			0.4	A/9.0/0.04			0.6	F/106/0.79	B/12.9/0.10	B/12.9/0.10	F/71.9	F/51.3/0.26	B/13.7/0.05	B/13.7/0.05	D/33.7	
Liberty Rd & Se	eldom Seen Rd																	
AM Peak Hour	No Build	C/31.5/0.16		F/113.6/1.08			N/A		N/A		A/7.2/0.42	N/A	D/43.2	N/A	B/14.2	1		D/40.1
. and wantieve	Build	C/31.6/0.16	N/A	F/120.5/1.10	F/107.8		N/A		N/A	F/125.8/1.12	A/7.2/0.42	N/A	D/49.7	N/A	B/14.4	4/0.78	B/14.4	D/43.8
DM Deck Ha	No Build	C/34.8/0.57	N/A	F/131.2/1.14	F/96.4		N/A		N/A	F/88.3/1.03	B/12.2/0.74	N/A	C/33.7	N/A	B/10.0	5/0.67	B/10.6	D/40.2
PM Peak Hour		D/37.3/0.63	N/A	F/173.9/1.25	F/124.6		N/A		N/A		B/11.3/0.73	N/A	C/32.0	N/A	A/9.9		A/9.9	D/45.8
X/X/X = Overal	, .		,	Capacity Rati	0													
N/A = Not Appli	icable, movemer	nt does not exis	t															

7.0 CONCLUSION AND RECOMMENDATIONS

The current Powell Grand land use plan is a much lower traffic generator than potential retail development that could be developed under existing zoning. The impact of the current land use plan does cause the need for some off-site improvements that are limited to planned site driveways immediately adjacent to the site. This plan is also an improvement over previous residential uses proposed for this site due to the smaller number of units and the focus on senior living patrons.

The Powell Grand development is predicted to generate 86 inbound trips and 152 outbound trips in the afternoon peak hour. These vehicle trips are distributed among three access points and four directions of travel on two public roadways providing access to the site. Because the site access and surrounding road system provides a high degree of flexibility for accessing the site, the impact to any one movement or intersection is attenuated. In general, the number of site generated trips added to most intersection movements such as a left turns, through or right turns throughout the study area ranges from the single digits to 76 vehicles in the peak hour. This is just over one vehicle per minute and significantly less than that at many locations.

Some intersections in the study area are already challenged with high traffic volumes, and the Mid-Ohio Regional Planning Commission forecasts high rates of traffic growth through 2036. The 3% compound annual growth rate provided by MORPC for Sawmill Parkway predicts an increase in traffic volumes exceeding 75% during the next 20 years, irrespective of site development. Sawmill Parkway traffic is estimated to exceed 40,000 vehicles per day by the design year implying a general demand for an additional through lane in each direction. This finding is unrelated to site development and is supported by our capacity analysis of background conditions where we found a need for a third northbound through lane at Powell Road and at Seldom Seen Road by 2036.

Site related impacts to be mitigated in conjunction with site development were determined for opening day conditions and illustrated in **Figure 8**. A graphical summary of the 2036 conditions we analyzed are illustrated in **Figure 9**.

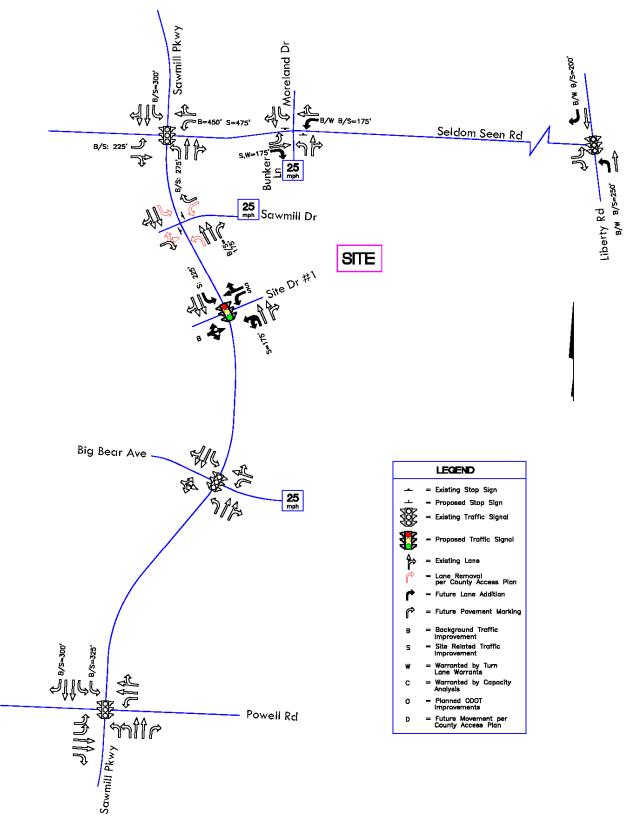
7.1 Site Mitigation Improvements

Development of the Powell Grand site requires modification of the existing road system by the developer, as follows:

- Signalize the proposed Drive 1 access to Sawmill Parkway and provide a minimum three lane east leg on the Powell Grand site consisting of separate left and right turn lanes outbound and one inbound lane. Installation of the traffic signal will require a maintenance agreement between the County and the developer. Outbound turn lanes should provide a minimum of 100 feet of storage and should be aligned so the right turn lane can be converted to a through-right lane in the future.
- 2. The northbound right turn lane on Sawmill Parkway at Site Drive 1 should be 175 feet to meet storage and deceleration requirements. "No Block" conditions caused by through lane traffic would require a longer lane but Park Woods Lane limits the length of the northbound right turn lane for Site Drive 1 to approximately 300 feet.
- 3. Open the median at the Drive 1 access point and provide a southbound left turn lane into Powell Grand and a northbound left turn lane that will be used to accommodate northbound U-Turns at the signal. Future improvements by others will establish an access on the west side of Sawmill Parkway that will also use the northbound left turn lane. The southbound left turn lane should be 225 feet long (including a 50 foot long drop taper) and the northbound left turn lane should be 175 feet based on storage and deceleration requirements. However, to help address "No Block" conditions caused by through lane traffic, these two turn lanes should be extended to the extent that space is available between Sawmill Drive and Park Woods Lane. With only two through lanes on Sawmill Parkway, the no block calculations yield a length of 1550' for southbound through traffic and 1850' for northbound through traffic which is not possible to provide.
- 4. Modify Sawmill Drive east of Sawmill Parkway to permit only right turn movements to and from Sawmill Parkway when Drive 1 signalization is completed. Remove the southbound left turn lane and enlarge the existing curbed median to replace the current left turn lane area there.
- 5. Retain Seldom Seen Road at Bunker Lane/Moreland Drive as a two-way, stop-controlled intersection since future traffic projections are not expected to reach warrant levels in 20 years. Add an eastbound right turn lane on Seldom Seen Road, 175 feet in length including storage and deceleration.
- 6. Addition of site traffic at study-area intersections was not found to lengthen existing turn lanes based on ODOT lane sizing calculations except at the Sawmill Parkway/Seldom Seen Road intersection. Turn lane lengths are shown for both "background" and "site" conditions on Figures 8 and 9. The comparison of the turn lane lengths shown indicates the only incremental difference due to site development is an added 25 feet for the southbound and westbound left turn movements at the Seldom Seen intersection.

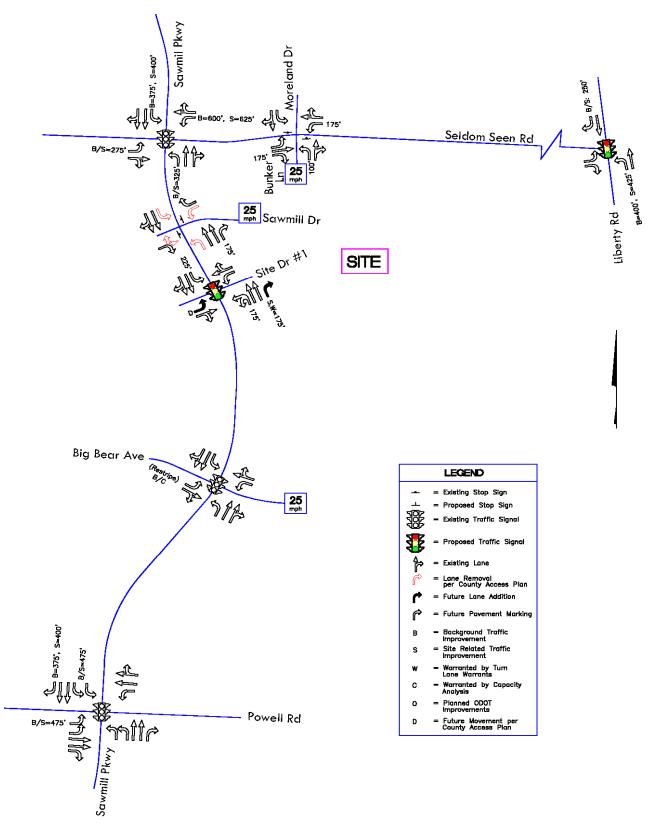
A graphical summary of improvements has been provided as **Figure 8** and **Figure 9**. All necessary public roadway improvements associated with the development, including any off-site improvements, shall be constructed with the first phase of construction except as agreed upon by the Delaware County Engineer.

7.2 No Build (Non-Site) Improvements


The following are improvements related to No Build conditions that should be considered regardless of the proposed site or potential roadway network modifications and should not be considered the responsibility of the developer:

- Install a traffic signal and northbound left turn lane at the Liberty Road/Seldom Seen Road intersection. This intersection meets a signal warrant now and experiences poor level of service in the eastbound left turn movement. The northbound left turn lane is warranted now and should be part of the signalization project. A southbound right turn lane is also warranted at this time as a background improvement but is not needed for capacity even in the design year with signalization. A roundabout could also be considered as an alternative improvement.
- 2. While not a part of this traffic study effort, previous concerns voiced by local residents accessing Sawmill Parkway via Parkwood Lane just south of Powell Grand suggest a northbound right turn lane should be constructed on Sawmill Parkway at Parkwood Lane.
- Delaware County should coordinate with ODOT and MORPC to ensure that the MORPC projections of future traffic growth reflected in this study are carried forward and that public agencies partner to consider additional network-wide improvements to support anticipated background traffic growth.
- 4. Long range growth in the Sawmill Parkway corridor, as forecast by MORPC, will produce an 80% increase in traffic volumes by 2036. The resultant north/south volumes are consistent with three lanes in each direction. Local agencies should begin planning for those improvements, particularly as Sawmill Parkway is extended north to US 42 as intended.

Though not committed improvements at this time, projected future conditions to address the 2036 traffic forecast have been illustrated on **Figure 9**.



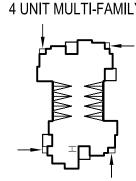


EXHIBIT 1:

Site Plan

4 UNIT MULTI-FAMILY

BUILDING B-2 5,124 LIVABLE SF

	101 mill street, suite 200 gahanna, ohio 43230 phone: 614.418.0600 www.ohm-advisors.com
PRELIMINARY NOT FOR CONSTRUCT	image: science of the state Group image: science of the science of
	job no: 6285150010 date: 05/20/2015 sheet: E-1

1 of: 1

APPENDIX A:

•

Approved MOU Data Collected

March 23, 2015

Mr. John A. Piccin, PE, PS Deputy Development Engineer Delaware County Engineer's Office 50 Channing Street Delaware, OH 43015

Approved as Approved as Approved as MAL ngineers, Surveyors, Planners, Scientists

Subject: Seldom Seen Acres Senior Living Site TIS Memorandum of Understanding

Dear Mr. Piccin,

This Memorandum of Understanding has been prepared to document the scope of the above captioned traffic study for a new development that we have been discussing. The site is located in the southeast quadrant of the Sawmill Road/Seldom Seen Road intersection in Delaware County, Ohio. In accordance with County standards our pre-meeting conversation was held via email on March 6, 2015 with the staff of Delaware County Engineer's Office. Following your concurrence, EMH&T will prepare an impact study in accordance with the methodologies and assumptions described below.

Proposed Development & Access Plan

The study will be prepared to determine the transportation impact associated with developing 308 senior living condominiums in three distinct styles. The site is also expected to include five acres of space that could be developed at up to 50,000 square feet of commercial space. The site access will be analyzed and compared to No Build conditions to identify site-related impacts. Both existing public street access points to the site will remain, one access to Sawmill Parkway via Sawmill Drive which will be converted to right-in/right-out only access, and one access to Seldom Seen Road via Bunker Lane. The study will analyze one (1) access scenario that utilizes only one (1) additional access comprised of a new full movement, signalized access point to Sawmill Parkway south of Sawmill Drive with no additional access to Seldom Seen Road.

Data Collection

Per our conversations, we plan to re-use the manual turning movement counts used in the previous study at this location. These previous counts were conducted by EMH&T personnel at the following intersections in November, 2012 during the 7-9 AM and 4-6 PM peak hours:

- Sawmill Parkway/Powell Road (SR 750)
- Sawmill Parkway/Big Bear Avenue
- Sawmill Parkway/Sawmill Drive
- Sawmill Parkway/Seldom Seen Road
- Seldom Seen Road/Bunker Lane

March 23, 2015

2014-2045

The Seldom Seen Road & Liberty Road manual turning movement count was conducted from 7 AM to 6 PM in November, 2012 to complete signal warrant analyses. Additional counts were performed in December, 2012 from 6-8 PM. Traffic count data to be used in preparing this study is attached for reference.

Traffic Volume Projections

Background traffic growth rates were previously provided by the Mid-Ohio Regional Planning Commission (MORPC) on January 10, 2013. Recommended growth rates for the study area provided by MORPC included:

- Sawmill Parkway- 3% .
- Powell Road- 2% .
- . Seldom Seen Road- 2.5%
- Liberty Road- 3%

Opening day and design year, morning and afternoon peak hour traffic volumes will be projected for a single build scenario that includes all proposed access with the full buildout scenario. Opening Year is assumed as Year 2016 and the Design Year will be Year 2036. Traffic data will be ped for the following scenarios:
 2016 Background (existing conditions)
 2016 Full Build with Proposed Access
 2036 Background -> H/ dry cuit & othice
 2036 Full Build with Proposed Access
 2036 Full Build with Proposed Access developed for the following scenario's:

Morning and afternoon weekday peak hour site generated trip ends for the proposed development will be forecast using trip generation rates for land use code #251(Senior Housing - Attached), #252 (Senior Housing - Detached) and #710 (Office) as published In <u>Trip Generation, 9th Edition</u> (Institute of Transportation Engineers, 2012). Site generated trip ends will be distributed to the adjacent street network according to patterns observed in the manual traffic count procedure and engineering judgment regarding likely destingtions for work-based trips during peak hours. Other development traffic will be included in the background condition for the adjacent daycare facility and office parcel along the Sawmill Parkway frontage and the site on the west side of Sawmill Parkway, which the County is expected to provide trip data for. Site-generated trips will be added to background traffic to determine full build traffic volumes.

We will re-use trip distribution assumptions from the previous efforts that includes input from Delaware County Engineer personnel. The expected gateway distributions are listed below:

- From/to Sawmill Parkway north 25%
- From/to Sawmill Parkway south 50%
- From/to Seldom Seen Road west 4%
- From/to Liberty Road north 4%
- From/to Liberty Road south 7%
- From/to Powell Road east -4%
- From/to Powell Road west 6%

Delaware County Engineer's Office Seldom Seen Senior Living Site TIS

Reports and Documentation

A detailed report including applicable figures and tables will be prepared to summarize study methodologies, analysis, findings and recommendations. The report will be submitted to the Delaware County Engineer for review. Please signify your concurrence with the scope of work outlined herein by signing below and returning this Memorandum of Understanding to me. Should questions or comments arise during your review of this memorandum or if I may be of further assistance in this matter, please contact me directly at (614) 775-4650.

Sincerely,

Jahr C. Bul

Douglas A. Bender, PE, PTOE Senlor Traffic Engineer

Coples

Don Hunter, Schottenstein Real Estate Group Vince Margello, Margello Development

ACCEPTANCE AND APPROVAL OF MEMORANDUM OF UNDERSTANDING

Wicharl Ahove By:

Date: 3/30/15

Seldom Seen Acres Senior Living Traffic Impact Study **Trip Generation Calculations** Institute of Transportation Engineers, 9th Edition

		-				
Square Feet or Units	ITE Code	Time Period	ITE Formula	Total Trips	Trips Entering	Trips Exiting
10,000	565	ADT	Average Rate = 74.06	742	371	370
sf		AM Peak	Average Rate = 12.18	122	65	57
		PM Peak	Average Rate = 12.34	123	58	65
9,000	710	ADT	Ln(T)=0.76Ln(x)+3.68	212	106	106
sf		AM Peak	Ln(T)=0.80Ln(x)+1.57	28	25	3
		PM Peak	T=1.12(x)+78.45	89	15	74
		ADT		954	477	476
		AM Peak		150	90	60
		PM Peak		212	73	139
	Feet or Units 10,000 sf 9,000	Feet or Units ITE Code 10,000 565 sf 9,000 710	Feet or UnitsITE CodeTime Period10,000565ADTsfAM Peak PM Peak9,000710ADT AM Peak PM Peak9,000710ADT AM Peak PM Peak9,000ADT AM Peak PM Peak	Feet or UnitsITE CodeTime PeriodITE Formula10,000565ADTAverage Rate = 74.06sfAM PeakAverage Rate = 12.18PM PeakAverage Rate = 12.349,000710ADTsfLn(T)=0.76Ln(x)+3.68AM PeakLn(T)=0.80Ln(x)+1.57PM PeakT=1.12(x)+78.45ADTADTAM PeakAM PeakT=1.12(x)+78.45	Feet or Units ITE Code Time Period ITE Formula Total Trips 10,000 565 ADT Average Rate = 74.06 742 sf AM Peak Average Rate = 12.18 122 PM Peak Average Rate = 12.34 123 9,000 710 ADT Ln(T)=0.76Ln(x)+3.68 212 Sf AM Peak Ln(T)=0.80Ln(x)+1.57 28 PM Peak T=1.12(x)+78.45 89 ADT AM Peak T=1.12(x)+78.45	Feet or Units ITE Code Time Period ITE Formula Total Trips Trips Entering 10,000 565 ADT Average Rate = 74.06 742 371 sf AM Peak Average Rate = 74.06 742 371 AM Peak Average Rate = 12.18 122 65 PM Peak Average Rate = 12.34 123 58 9,000 710 ADT in(T)=0.76in(x)+3.68 212 106 sf AM Peak in(T)=0.80in(x)+1.57 28 25 PM Peak T=1.12(x)+78.45 89 15 ADT ADT T=1.12(x)+78.45 90

5500 New Albany Rd. Columbus, OH 43054 *emht.com*

File Name : Sawmill Pkwy - Powell Site Code : 00000000 Start Date : 11/7/2012 Page No : 1

								Gro	oups F	rinted-	Cars -	Truck	s								
		SAV	VMILL	PKWY	,		POWI						MILL I	PKWY			POWI				
		So	outhbo	und			W	estbo	und			No	orthbo	und			E	astbo	und		
Start Time *** BREAK *		Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App, Total	Inl. Total
07:00 AM	41	208	12	0	261	10	34	15	0	59	23	93	13	0	- 129 131	18 23	32 46	16 18	0	66 87	515
07:15 AM	48	210	29	0	287	19	41	11	0	71 83	33 43	81 117	17 13	0	173	23	40	16	0	87 91	576 603
07:30 AM 07:45 AM	36 48	193 222	27 24	0	256 294	22 21	56 43	5 10	0	03 74	43 31	120	15	0	166	22	58	24	ő	104	638
Total	173	833	24 92	0	1098	72	43 174	41	0	287	130	411	58	0	599	90	184	74	0	348	2332
08:00 AM	43	197	30	0	270	23	42	10	0	75	30	87	19	0	136	27	46	18	0	91	572
08:15 AM	42	188	12	0	242	38	35	12	0	85	31	90	20	0	141	17	59	18	0	94	562
08:30 AM	52	194	19	0	265	36	49	11	0	96	49	97	15	0	161	38	59	27	0	124	646
08:45 AM	40	176	30	0	246	25	57	13	0	95	35	109	23	0	167	31	55	29	0	115	623
Total	177	755	91	0	1023	122	183	46	0	351	145	383	77	0	605	113	219	92	0	424	2403
*** BREAK *	**																				
04:00 PM	50	113	19	0	182	59	58	20	0	137	41	176	26	0	243	52	60	25	0	137	699
04:15 PM	49	144	12	0	205	37	70	18	0	125	55	206	26	0	287	65	80	29	0	174	791
04:30 PM	66	130	14	0	210	31	59	24	0	114	45	292	24	0	361	58	60	33	0	151	836
04:45 PM	50	160	15	0	225	46	64	26	0	136	44	248	23	0	315	69	61	31	0	161	837
Total	215	547	60	0	822	173	251	88	0	512	185	922	99	0	1206	244	261	118	0	623	3163
05:00 PM	61	166	16	0	243	48	51	25	0	124	50	294	31	0	375	78	71	20	0	169	911
05:15 PM	60	167	19	0	246	50	56	34	0	140	40	257	32	0	329	97	88	19	0	204	919
05:30 PM	63	163	23	0	249	45	65	28	0	138	59	290	20	0	369	66	59	18	0	143	899
05:45 PM	66	160	29	0	255	43	70	32	0	145	64	258	29	0	351	87	76	28	0	191	942
Total	250	656	87	0	993	186	242	119	0	547	213	1099	112	0	1424	328	294	85	0	707	3671
Grand Total	815	2791	330	0	3936	553	850	294	0	1697	673	2815	346	0	3834	775	958	369	0	2102	11569
Apprch %	20.7	70.9	8.4	0		32.6	50.1	17.3	0		17.6	73.4	9	0	00.4	36.9	45.6	17.6	0	40.0	
Total %	7	24.1	2.9	0	34	4.8	7.3	2.5	0	14.7	5.8	24.3	3	0	33.1	6.7 763	8.3 950	3.2 356	0	18.2 2069	11270
Cars	795	2763	322	0	3880	551	834	289	0	1674	656	2759	341	0	3756 98	763 98.5	950 99.2	356 96.5	0	2069	11379 98.4
% Cars	97.5	99	97.6	0	98.6	99.6	98.1	98.3	0	98.6	97.5	98	98.6	0	98 78	98.5	99.Z	96.5 13	0	98.4 33	98.4 190
Trucks	20	28	8	0	56	2	16 1.9	5 1.7	0	23 1.4	17 2.5	56 2	5 1.4	0	2	1.5	0.8	3.5	0	1.6	1.6
% Trucks	2.5	1	2.4	U	1.4	0.4	1.9	1.7	U	1.4	2.0	Z	1.4	0	Z	1.0	0.0	0.0	0	1.0	1.0

5500 New Albany Rd. Columbus, OH 43054 *emht.com*

File Name : Sawmill Pkwy - Big Bear Ave Site Code : 00000000 Start Date : 11/7/2012 Page No : 1

								Gre	oups F	rinted-	Cars -	Trucl	<s< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></s<>								
	S		LL PR			E		AR A			S		L PR			E		AR A			
	·		outhbo					estbo					orthbo					astbou			
Start Time	Left				App. Total	Left		Right		App, Total	Left		Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
07:00 AM	4		3	1	225	8	1	2	0	11	1	170	7	0	178	14	0	22	0	36	450
07:15 AM	4	250	4	1	259	10	0	5	0	15	2	108	5	0	115	7	2	17	1	27	416
07:30 AM	5	249	5	0	259	9	0	2	0	11	3	128	4	0	135	3	1	14	0	18	423
07:45 AM	9	282	3	0	294	10	0	6	0	16	2	146	8	0	156	6	3	9	0	18	484
Total	22	998	15	2	1037	37	1	15	0	53	8	552	24	0	584	30	6	62	1	99	1773
08:00 AM	10	282	2	0	294	6	1	5	1	13	3	136	19	1	159	3	2	15	0	20	486
08:15 AM	3	248	1	0	252	13	0	5	0	18	4	105	10	0	119	1	0	11	1	13	402
08:30 AM	17	242	3	0	262	5	1	2	4	12	3	109	26	1	139	4	7	15	0	26	439
08:45 AM	11	222	2	0	235	45	10	22	3	80	5	118	19	0	142	2	5	14	1	22	479
Total	41	994	8	0	1043	69	12	34	8	123	15	468	74	2	559	10	14	55	2	81	1806
*** BREAK **	*																				
04:00 PM	7	169	2	1	179	8	1	4	1	14	12	239	13	1	265	11	2	9	1	23	481
04:15 PM	4	194	7	0	205	4	1	4	0	9	8	285	6	0	299	8	2	10	0	20	533
04:30 PM	2	177	4	0	183	5	0	5	0	10	12	372	11	0	395	15	0	16	0	31	619
04:45 PM	10	231	8	2	251	7	2	4	0	13	13	333	19	0	365	6	6	10	2	24	653
Total	23	771	21	3	818	24	4	17	1	46	45	1229	49	1	1324	40	10	45	3	98	2286
05:00 PM	3	190	7	0	200	7	3	4	1	15	12	378	10	1	401	8	5	10	0	23	639
05:15 PM	5	249	6	0	260	18	2	2	0	22	12	384	22	0	418	8	4	6	2	20	720
05:30 PM	5	197	3	0	205	12	5	6	1	24	12	373	11	2	398	14	5	11	0	30	657
05:45 PM	3	247	5	1	256	16	5	7	2	30	11	340	25	1	377	10	6	7	1	24	687
Total	16	883	21	1	921	53	15	19	4	91	47	1475	68	4	1594	40	20	34	3	97	2703
Grand Total	102	3646	65	6	3819	183	32	85	13	313	115	3724	215	7	4061	120	50	196	9	375	8568
Apprch %	2.7	95.5	1.7	0.2		58.5	10.2	27.2	4.2		2.8	91.7	5.3	0.2		32	13.3	52.3	2.4		
Total %	1.2	42.6	0.8	0.1	44.6	2.1	0.4	1	0.2	3.7	1.3	43.5	2.5	0.1	47.4	1.4	0.6	2.3	0.1	4.4	
Cars	94	3583	62	6	3745	179	30	73	13	295	114	3646	206	7	3973	117	50	195	9	371	8384
	92.2	98.3	95.4	100	98.1	97.8	93.8	85.9	100	94.2	99.1	97.9	95.8	100	97.8	97.5	100	99.5	100	98.9	97.9
Trucks	8	63	3	0	74	4	2	12	0	18	1	78	9	0	88	3	0	1	0	4	184
% Trucks	7.8	1.7	4.6	0	1.9	2.2	6.2	14.1	0	5.8	0.9	2.1	4.2	0	2.2	2.5	0	0.5	0	1.1	2.1

5500 New Albany Rd. Columbus, OH 43054 *emht.com*

File Name : Sawmill Pkwy - Sawmill Dr Site Code : 11071201 Start Date : 11/7/2012 Page No : 1

								Cm	oune D	rinted- C	ore - 1	Frueks									
		SAU	VMILL	DUW	v		SA.	WMIL		rinteu- C	Jais - 1		MILL	PKWY	v		SA	WMIL	LDR		
			outhbou					estbou					orthbo		•			astbou			
Start Time	Left		Right	Peds	App_ Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
07:00 AM	2	226	1	0	229	5	0	3	0	8	1	153	3	1	158	3	0	9	0	12	407
07:15 AM	1	244	0	0	245	5	0	0	0	5	3	110	3	0	116	2	0	3	1	6	372
07:30 AM	1	231	0	0	232	7	0	2	0	9	3	144	1	0	148	1	0	8	1	10	399
07:45 AM	2	297	1	0	300	• 1	0	2	0	3	3	154	7	0	164	0	0	7	0	7	474
Total	6	998	2	0	1006	18	0	7	0	25	10	561	14	1	586	6	0	27	2	35	1652
08:00 AM	2	268	0	0	270	10	0	3	0	13	7	121	5	0	133	0	1	0	1	2	418
08:15 AM	1	234	2	0	237	6	1	0	0	7	3	94	7	0	104	1	0	9	0	10	358
08:30 AM	2	234	0	0	236	1	0	1	0	2	2	116	9	0	127	3	1	7	0	11	376
08:45 AM	2	227	3	0	232	6	0	1	0	7	3	116	13	0	132	3	0	7	1	11	382
Total	7	963	5	0	975	23	1	5	0	29	15	447	34	0	496	7	2	23	2	34	1534
*** BREAK *	**																				
04:00 PM	0	166	2	0	168	0	0	0	0	0	3	234	15	2	254	0	0	4	3	7	429
04:15 PM	0	207	2	- 0	209	3	0	0	0	3	5	288	11	1	305	0	1	5	0	6	523
04:30 PM	0	163	4	0	167	3	0	0	3	6	6	368	19	3	396	0	0	8	0	8	577
04:45 PM	1	225	1	0	227	6	0	2	3	11	7	318	12	0	337	1	0	6	1	8	583
Total	1	761	9	0	771	12	0	2	6	20	21	1208	57	6	1292	1	1	23	4	29	2112
05:00 PM	0	191	0	1	192	5	0	3	0	8	10	381	16	0	407	2	1	5	2	10	617
05:15 PM	3	257	1	0	261	3	0	2	0	5	11	343	27	0	381	1	0	3	3	7	654
05:30 PM	0	200	1	4	205	2	0	2	2	6	7	364	26	0	397	1	0	3	2	6	614
05:45 PM	0	220	4	0	224	2	0	0	0	2	7	298	21	0	326	1	1	6	1	9	561
Total	3	868	6	5	882	12	0	7	2	21	35	1386	90	0	1511	5	2	17	8	32	2446
*** BREAK **	* #																				
Grand Total	17	3590	22	5	3634	65	1	21	8	95	81	3602	195	7	3885	19	5	90	16	130	7744
Apprch %	0.5	98.8	0.6	0.1		68.4	1.1	22.1	8.4		2.1	92.7	5	0.2		14.6	3.8	69.2	12.3		
Total %	0.2	46.4	0.3	0.1	46.9	0.8	0	0.3	0.1	1.2	1	46.5	2.5	0.1	50.2	0.2	0.1	1.2	0.2	1.7	5604
Cars	17	3534	21	5	3577	65	1	21	8	95	76	3527	195	7	3805	19	5	87	16	127	7604
% Cars	100	98.4	95.5	100	98.4	100	100	100	100	100	93.8	97.9	100	100	97.9	100	100	96.7	100	97.7	98.2
Trucks	0	56	1	0	57	0	0	0	0	0	5	75	0	0	80	0	0	3	0	3	140
% Trucks	0	1.6	4.5	0	1.6	0	0	0	0	0	6.2	2.1	0	0	2.1	0	0	3.3	0	2.3	1.8

5500 New Albany Rd. Columbus, OH 43054 *emht.com*

File Name : Sawmill Pkwy - Seldom Seen Site Code : 00000000 Start Date : 11/8/2012 Page No : 1

								C -	Dung D	rinted- C	ore - 1	'ruolze									
			SAWM	ILL.			SEI	DOM		rintea- C	ais - 1		AWM	nı			SEL	DOM	SEEN		
		-	uthbou					estbou					orthbo					astbou			
Start Time *** BREAK	Left ***		Right		App. Total	Left		Right		App. Total	Left	Thru	Right	Peds	Арр. Тона	Left	Thru	Right	Peds	App. Total	Int. Total
07:00 AM	16	192	25	0	233	34	9	15	0	58	8	131	8	0	147	16	7	19	0	42	480
07:15 AM	11	183	15	0	209	21	4	9	0	34	6	98	4	0	108	6	12	19	0	37	388
07:30 AM	11	222	3	0	236	49	6	10	0	65	6	90	21	0	117	10	13	18	0	41	459
07:45 AM	14	176	19	0	209	44	8	16	0	68	9	115	26	0	150	5	13	20	0	38	465
Total	52	773	62	0	887	148	27	50	0	225	29	434	59	0	522	37	45	76	0	158	1792
08:00 AM	19	178	2	0	199	39	7	5	0	51	3	85	19	0	107	5	16	18	0	39	396
08:15 AM	15	167	4	0	186	38	11	6	0	55	10	89	18	0	117	6	9	18	0	33	391
08:30 AM	16	187	4	0	207	48	8	13	0	69	10	114	33	0	157	6	17	20	0	43	476
08:45 AM	22	149	1	0	172	27	14	11	0	52	9	95	28	0	132	5	10	14	0	29	385
Total	72	681	11	0	764	152	40	35	0	227	32	383	98	0	513	22	52	70	0	144	1648
*** BREAK *	**																				
04:00 PM	24	115	5	0	144	30	15	18	0	63	23	186	44	0	253	8	20	18	0	46	506
04:15 PM	26	114	15	0	155	59	13	31	0	103	[4	192	39	0	245	4	12	18	0	34	537
04:30 PM	14	141	3	0	158	53	12	17	0	82	13	206	63	0	282	7	17	13	0	37	559
04:45 PM	16	151	3	0	170	51	18	23	0	92	18	243	51	0	312	4	19	16	0	39	613
Total	80	521	26	0	627	193	58	89	0	340	68	827	197	0	1092	23	68	65	0	156	2215
05:00 PM	21	111	6	0	138	50	11	27	0	88	24	265	45	0	334	8	25	15	0	48	608
05:15 PM	28	159	4	0	191	65	28	22	0	115	17	274	65	0	356	11	21	19	0	51	713
05:30 PM	20	177	6	0	203	60	11	16	0	87	16	279	56	0	351	14	23	16	0	53	694
05:45 PM	23	179	5	0	207	56	22	21	0	99	19	268	50	0	337	14	18	18	0	50	693
Total	92	626	21	0	739	231	72	86	0	389	76	1086	216	0	1378	47	87	68	0	202	2708
Grand Total	296	2601	120	0	3017	724	197	260	0	1181	205	2730	570	0	3505	129	252	279	0	660	8363
Apprch %	9.8	86.2	4	0		61.3	16.7	22	0		5.8	77.9	16.3	0		19.5	38.2	42.3	0		
Total %	3.5	31.1	1.4	0	36.1	8.7	2.4	3.1	0	14.1	2.5	32.6	6.8	0	41.9	1.5	3	3.3	0	7.9	0004
Cars	289	2566	114	0	2969	716	197	257	0	1170	201	2681	563	0	3445	123	249	278	0	650	8234
% Cars	97.6	98.7	95	0	98.4	98.9	100	98.8	0	99.1	98	98.2	98.8	0	98.3	95.3	98.8	99.6	0	98.5	98.5
Trucks	7	35	6	0	48	8	0	3	0	11	4	49	7	0	60	6	3	1	0	10	129
% Trucks	2.4	1.3	5	0	1.6	1.1	0	1.2	0	0.9	2	1.8	1.2	0	1.7	4.7	1.2	0.4	0	1.5	1.5

5500 New Albany Rd. Columbus, OH 43054 *emht.com*

File Name : Seldom Seen - Bunker Site Code : 11081201 Start Date : 11/8/2012 Page No : 1

								C	aune D	rinted- C	owo 1	'muolee									
		F	Bunker	Ln			SELD	OM SE			a15 - 1		JNKE	R L N			SELD	OM SE	EEN RI	D	
			uthbou					estbou		0			orthbo					astbou			
Start Time	Left				App. Total	Left		Right		App, Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
*** BREAK *	**																				
07:15 AM	1	1	4	0	6	2	28	0	0	30	7	1	2	0	10	5	27	8	0	40	86
07:30 AM	3	0	3	0	6	2	30	2	0	34	8	0	2	0	10	2	46	9	0	57	107
07:45 AM	3	1	2	0	6	2	37	5	0	44	5	0	6	0	11	2	59	17	0	78	139
Total	7	2	9	0	18	6	95	7	0	108	20	1	10	0	31	9	132	34	0	175	332
08:00 AM	1	0	4	0	5	0	47	4	0	51	9	0	4	0	13	1	40	8	0	49	118
08:15 AM	1	1	1	0	3	0	35	1	0	36	7	0	6	0	13	2	45	11	0	58	110
08:30 AM	1	0	3	0	4	2	48	2	0	52	5	1	7	0	13	4	49	2	0	55	124
08:45 AM	5	0	2	0	7	4	37	3	0	44	6	2	6	0	14	4	41	14	0	59	124
Total	8	1	10	0	19	6	167	10	0	183	27	3	23	0	53	11	175	35	0	221	476
*** BREAK *	**																				
04:00 PM	4	0	3	2	9	3	66	7	0	76	4	0	6	0	10	3	61	9	3	76	171
04:15 PM	4	0	8	0	12	4	60	5	0	69	10	0	4	0	14	8	76	14	1	99	194
04:30 PM	6	0	5	0	11	9	72	2	0	83	5	0	7	0	12	7	56	3	1	67	173
04:45 PM	3	0	6	0	9	6	62	4	0	72	8	0	6	0	14	16	61	13	0	90	185
Total	17	0	22	2	41	22	260	18	0	300	27	0	23	0	50	34	254	39	5	332	723
05:00 PM	8	0	5	2	15	4	87	4	0	95	17	0	4	0	21	4	74	11	0	89	220
05:15 PM	5	1	5	0	11	8	74	8	0	90	10	0	10	0	20	4	72	9	1	86	207
05:30 PM	7	0	4	0	11	6	77	8	0	91	8	0	9	0	17	10	71	13	0	94	213
05:45 PM	5	0	7	0	12	8	69	6	0	83	8	0	5	0	13	7	65	8	0	80	188
Total	25	1	21	2	49	26	307	26	0	359	43	0	28	0	71	25	282	41	1	349	828
*** BREAK *	**																				
06:15 PM	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1
Grand Total	57	4	62	4	127	60	830	61	0	951	117	4	84	0	205	79	843	149	6	1077	2360
Apprch %	44.9	3.1	48.8	3.1		6.3	87.3	6.4	0		57.1	2	41	0		7.3	78.3	13.8	0.6		
Total %	2.4	0.2	2.6	0.2	5.4	2.5	35.2	2.6	0	40.3	5	0.2	3.6	0	8.7	3.3	35.7	6.3	0.3	45.6	
Cars	57	4	62	4	127	59	818	61	0	938	117	4	84	0	205	79	832	146	6	1063	2333
% Cars	100	100	100	100	100	98.3	98.6	100	0	98.6	100	100	100	0	100	100	98.7	98	100	98.7	98.9
Trucks	0	0	0	0	0	1	12	0	0	13	0	0	0	0	0	0	11	3	0	14	27
% Trucks	0	0	0	0	0	1.7	1.4	0	0	1.4	0	0	0	0	0	0	1.3	2	0	1.3	1.1

5500 New Albany Rd. Columbus, OH 43054 *emht.com* File Name : Sawmill Pkwy - Park Woods Ln Site Code : 00000000

Page No : 1

								Gr	oups F	rinted-	Cars -	Truck	(S								
			MILL	PKWY ound	,				DDS LI			SAW	/MILL orthbo					(WOC astbou	DDS LI	4	
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App, Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
07:00 AM	0	242	0	2	244	1	0	0	0	1	0	156	1	0	157	0	0	0	0	0	402
07:15 AM	0	261	0	0	261	1	0	0	1	2	0	128	1	0	129	0	0	0	0	0	392
07:30 AM	0	258	0	0	258	6	0	0	0	6	0	144	0	0	144	0	0	0	0	0	408
07:45 AM	1	300	0	1	302	1	0	0	0	1	0	167	0	0	167	0	0	0	0	0	470
Total	1	1061	0	3	1065	9	0	0	1	10	0	595	2	0	597	0	0	0	0	0	1672
08:00 AM	0		0	0	267	5	0	0	1	6	0	121	0	0	121	0	0	0	0	0	394
08:15 AM	0	252	0	0	252	3	0	0	0	3	0	100	12	0	112	0	0	0	0	0	367
08:30 AM	0	244	0	0	244	4	0	1	0	5	0	120	2	1	123	0	0	0	0	0	372
08:45 AM	0	235	0	1	236	2	0	1	0	3	0	146	2	0	148	0	0	0	0	0	387
Total	0	998	0	1	999	14	0	2	1	17	0	487	16	1	504	0	0	0	0	0	1520
*** BREAK **	**																				
04:00 PM	0	192	0	2	194	0	0	0	0	0	0	256	3	0	259	0	0	0	0	0	453
04:15 PM	0	201	0	0	201	4	0	2	0	6	0	329	6	0	335	0	0	0	0	0	542
04:30 PM	2	194	0	0	196	1	0	1	0	2	0	393	3	3	399	0	0	0	0	0	597
04:45 PM	2	223	0	1	226	3	0	0	0	3	0	353	3	3	359	0	0	0	0	0	588
Total	4	810	0	3	817	8	0	3	0	11	0	1331	15	6	1352	0	0	0	0	0	2180
05:00 PM	1	221	0	4	226	1	0	0	0	1	0	401	1	0	402	0	0	0	0	0	629
05:15 PM	0	259	0	1	260	3	0	1	1	5	0	375	3	1	379	0	0	0	0	0	644
05:30 PM	0	218	0	4	222	1	0	0	0	1	0	384	5	1	390	0	0	0	0	0	613
05:45 PM	0	246	0	2	248	1	0	2	0	3	0	355	5	0	360	0	0	0	0	0	611
Total	1	944	0	11	956	6	0	3	1	10	0	1515	14	2	1531	0	0	0	0	0	2497
Grand Total	6	3813	0	18	3837	37	0	8	3	48	0	3928	47	9	3984	0	0	0	0	0	7869
Apprch %	0.2	99.4	0	0.5		77.1	0	16.7	6.2		0	98.6	1.2	0.2		0	0	0	0		
Total %	0.1	48.5	0	0.2	48.8	0.5	0	0.1	0	0.6	0	49.9	0.6	0.1	50.6	0	0	0	0	0	
Cars	5	3723	0	18	3746	37	0	8	3	48	0	3825	47	9	3881	0	0	0	0	0	7675
% Cars	83.3	97.6	0	100	97.6	100	0	100	100	100	0	97.4	100	100	97.4	0	0	0	0	0	97.5
Trucks	1	90	0	0	91	0	0	0	0	0	0	103	0	0	103	0	0	0	0	0	194
% Trucks	16.7	2.4	0	0	2.4	0	0	0	0	0	0	2.6	0	0	2.6	0	0	0	0	0	2.5

5500 New Albany Rd. Columbus, OH 43054 *emht.com*

File Name : Seldom Seen - Liberty Site Code : 00000000 Start Date : 11/13/2012 Page No : 1

		LIBE				s	ELDO		N	Printed-	Cars -	LIBE		und		S	ELDO	M SEE			
Start Time 07:00 AM 07:15 AM 07:30 AM 07:45 AM Total	Left 0 0 0 0	Thru 86 94 88 86 354	Right 14 10 24 38 86	Peds 0 0 0 0 0	App_Total 100 104 112 124 440	Left 0 0 0 0	VV Thru 0 0 0 0	Right 0 0 0 0 0	Peds 0 0 0 0 0	App, Total 0 0 0 0 0	Left 20 24 39 38 121		Right 0 0 0 0 0	Peds 0 0 0 0 0	App_Total 80 71 121 113 385	Left 4 1 6 8 19	Thru 0 0 0 0 0	Right 34 46 39 37 156	Peds 0 0 0 0 0	App. Total 38 47 45 45 175	Int. Total 218 222 278 282 1000
08:00 AM 08:15 AM 08:30 AM 08:45 AM Total	0 0 0 0	76 59 69 60 264	17 16 21 33 87	0 0 0 0	93 75 90 93 351	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	31 32 37 23 123	45 42 43 54 184	0 0 0 0	0 0 0 0 0	76 74 80 77 307	9 8 7 11 35	0 0 0 0	32 46 31 25 134	0 1 0 0 1	41 55 38 36 170	210 204 208 206 828
09:00 AM 09:15 AM 09:30 AM 09:45 AM Total	0 0 0 0	52 39 55 32 178	23 17 16 18 74	0 0 0 0	75 56 71 50 252	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	21 32 19 21 93	57 37 37 42 173	0 0 0 0	0 0 0 0	78 69 56 63 266	14 15 14 5 48	0 0 0 0	30 18 26 8 82	1 0 0 1	45 33 40 13 131	198 158 167 126 649
10:00 AM 10:15 AM 10:30 AM 10:45 AM Total	0 0 0 0	37 38 42 42 159	15 12 18 15 60	0 0 0 0	52 50 60 57 219	0 0 0 0	0 0 0 0	0 0 0 0	0 0 1 1 2	0 0 1 1 2	15 14 17 18 64	41 30 31 33 135	0 0 0 0	0 0 0 0	56 44 48 51 199	10 12 19 9 50	0 0 0 0	16 27 18 30 91	0 0 0 0	26 39 37 39 141	134 133 146 148 561
11:00 AM 11:15 AM 11:30 AM 11:45 AM Total	0 0 0 0	49 45 47 32 173	17 14 19 16 66	0 0 0 0	66 59 66 48 239	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0		15 11 21 23 70	34 34 38 37 143	0 0 0 0	0 0 0 0	49 45 59 60 213	10 10 7 10 37	0 0 0 0	23 22 26 18 89	0 0 0 0	33 32 33 28 126	148 136 158 136 578
12:00 PM 12:15 PM 12:30 PM 12:45 PM Total	0 0 0 0	40 41 34 47 162	9 6 10 9 34	0 0 0 0	49 47 44 56 196	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	9 19 21 21 70	36 43 42 30 151	0 0 0 0	0 0 0 0	45 62 63 51 221	7 7 10 13 37	0 0 0 0	15 35 25 22 97	0 0 0 0	22 42 35 35 134	116 151 142 142 551
01:00 PM 01:15 PM 01:30 PM 01:45 PM Total	0 0 0 0	49 49 37 36 171	20 7 13 7 47	0 0 0 0	69 56 50 43 218	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	15 21 18 17 71	33 31 52 43 159	0 0 0 0	0 0 0 0	48 52 70 60 230	16 13 14 22 65	0 0 0 0	20 31 23 33 107	0 0 1 1	36 44 37 56 173	153 152 157 159 621
02:00 PM 02:15 PM 02:30 PM 02:45 PM Total	0 0 0 0	37 35 57 91 220	10 20 15 14 59	0 0 0 0	47 55 72 105 279	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	17 28 23 22 90	39 48 42 59 188	0 0 0 0	0 0 0 0	56 76 65 81 278	11 21 13 15 60	0 0 0 0	13 25 39 33 110	1 0 0 1	25 46 52 48 171	128 177 189 234 728
03:00 PM 03:15 PM 03:30 PM 03:45 PM Total	0 0 0 0	68 72 57 60 257	14 17 16 14 61	0 0 0 0	82 89 73 74 318	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	39 35 33 25 132	65 57 87 86 295	0 0 0 0	1 0 0 1	105 92 120 111 428	18 13 21 20 72	0 0 0 0	47 27 31 37 142	0 0 0 0	65 40 52 57 214	252 221 245 242 960
04:00 PM 04:15 PM 04:30 PM 04:45 PM Total	0 0 0 0	63 65 70 76 274	24 21 23 19 87	0 0 0 0	87 86 93 95 361	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	51 40 35 41 167	75 66 78 110 329	0 0 0 0	0 0 0 0	126 106 113 151 496	17 13 25 17 72	0 0 0 0	37 37 35 43 152	0 0 0 0	54 50 60 224	267 242 266 306 1081

5500 New Albany Rd. Columbus, OH 43054 *emht.com*

File Name : Seldom Seen - Liberty Site Code : 00000000 Start Date : 11/13/2012 Page No : 2

								Gro	oups F	Printed-	Cars	Trucl	s								
		LIBE	RTY		SELDOM SEEN							LIBE	RTY		SELDOM SEEN						
	Southbound					Westbound							orthbo	und	Eastbound						
Start Time	Left	Thru	Right	Peds	App, Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
05:00 PM	0	82	25	0	107	0	0	0	0	0	44	112	0	0	156	21	0	53	0	74	337
05:15 PM	0	69	26	0	95	0	0	0	0	0	53	94	0	0	147	19	0	42	0	61	303
05:30 PM	0	54	27	0	81	0	0	0	0	0	34	91	0	0	125	30	0	44	0	74	280
05:45 PM	0	63	15	0	78	0	0	0	0	0	32	122	0	0	154	33	0	42	0	75	307
Total	0	268	93	0	361	0	0	0	0	0	163	419	0	0	582	103	0	181	0	284	1227
Grand Total	0	2480	754	0	3234	0	0	0	2	2	1164	2440	0	1	3605	598	0	1341	4	1943	8784
Apprch %	0	76.7	23.3	0		0	0	0	100		32.3	67.7	0	0		30.8	0	69	0.2		
Total %	0	28.2	8.6	0	36.8	0	0	0	0	0	13.3	27.8	0	0	41	6.8	0	15.3	0	22.1	
Cars	0	2403	735	0	3138	0	0	0	2	2	1155	2368	0	1	3524	579	0	1318	3	1900	8564
% Cars	0	96.9	97.5	0	97	0	0	0	100	100	99.2	97	0	100	97.8	96.8	0	98.3	75	97.8	97.5
Trucks	0	77	19	0	96	0	0	0	0	0	9	72	0	0	81	19	0	23	1	43	220
% Trucks	0	3.1	2.5	0	3	0	0	0	0	0	0.8	3	0	0	2.2	3.2	0	1.7	25	2.2	2.5

5500 New Albany Rd. Columbus, OH 43054 *emht.com*

File Name : Seldom Seen-Liberty 12-13 Site Code : 00000000 Start Date : 12/13/2012 Page No : 1

Groups Printed- Cars - Trucks																					
	LIBERTY SELDOM SEEN											LIBER				S					
Southbound							Westbound						orthbo	und		Eastbound					
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
06:00 PM	0	58	20	0	78	0	0	0	0	0	47	97	0	0	144	23	0	47	0	70	292
06:15 PM	0	65	22	0	87	0	0	0	0	0	41	79	0	0	120	20	0	39	0	59	266
06:30 PM	0	50	35	0	85	0	0	0	0	0	39	85	0	0	124	22	0	42	0	64	273
06:45 PM	0	59	25	0	84	0	0	0	0	0	31	70	0	0	101	23	0	43	0	66	251
Total	0	232	102	0	334	0	0	0	0	0	158	331	0	0	489	88	0	171	0	259	1082
07:00 PM	0	50	22	0	72	0	0	0	0	0	43	74	0	0	117	32	0	37	0	69	258
07:15 PM	õ	48	18	ŏ	66	õ	ŏ	õ	õ	Ő	29	61	0	0	90	25	0	31	0	56	212
07:30 PM	ŏ	25	17	õ	42	ŏ	ŏ	ŏ	õ	Ő	25	52	Ō	0	77	23	0	31	0	54	173
07:45 PM	õ	21	10	õ	31	ŏ	Õ	ŏ	ō	Ő	21	38	Ō	0	59	16	0	23	0	39	129
Total	Ő	144	67	0	211	0	0	0	0	0	118	225	0	0	343	96	0	122	0	218	772
Grand Total	0	376	169	0	545	0	0	0	0	0	276	556	0	0	832	184	0	293	0	477	1854
Apprch %	ő	69	31	Ő	343	0	ő	Ő	Ő	v	33.2	66.8	ŏ	ŏ	002	38.6	õ	61.4	õ		1001
Total %	0	20.3	9.1	ő	29.4	ő	Ő	ŏ	Ő	0	14.9	30	ŏ	õ	44.9	9.9	õ	15.8	0	25.7	
Cars	0	375	167	0	542	Ő	0	ŏ	Ő	0	275	555	õ	ñ	830	183	ō	292	0	475	1847
% Cars	0	99.7	98.8	õ	99.4	0	ő	ŏ	õ	Ő	99.6	99.8	ŏ	õ	99.8	99.5	ō	99.7	0	99.6	99.6
Trucks	ő	33.7	2	0	33.4	Ő	õ	ŏ	õ	Ő	1	1	ŏ	õ	2	1	ō	1	Õ	2	7
% Trucks	0	0.3	1.2	0	0.6	õ	0	Ő	0	0	0.4	0.2	õ	0	0.2	0.5	0	0.3	Ō	0.4	0.4

Alford, Jennifer

From: Sent: To: Cc: Subject: Humenny, Justin Thursday, December 06, 2012 2:07 PM Alford, Jennifer Creed, Larry FW: Sawmill Pkwy / Seldom Seen Growth Rate

. . . .

Here are the growth rates I received from MORPC.

From: Chandra Parasa [mailto:cparasa@morpc.org] Sent: Thursday, December 06, 2012 10:15 AM To: Humenny, Justin Cc: Nick Gill Subject: RE: Sawmill Pkwy / Seldom Seen Growth Rate

Justin,

We have completed your request for the overall growth rates for this study area, between Sawmill Parkway & Powell Road, to Seldom Seen Road & Liberty Road. Please use a compounded annual growth rates for this study area as follows: 3% for all of Sawmill Parkway 2% for Powell Road 2.5% for Seldom Seen Road 3% for Liberty Road

Please note that the growth rates do reflect Sawmill Parkway being extended all the way to US 42.

Thanks, Chad

From: Chandra Parasa Sent: Tuesday, December 04, 2012 11:06 AM To: 'Humenny, Justin' Cc: Nick Gill Subject: RE: Sawmill Pkwy / Seldom Seen Growth Rate

Justin,

We have almost completed processing this request. We are currently reviewing, will contact you soon.

Thanks, Chad

From: Humenny, Justin [<u>mailto:jhumenny@emht.com</u>] Sent: Tuesday, December 04, 2012 9:48 AM To: Chandra Parasa Subject: RE: Sawmill Pkwy / Seldom Seen Growth Rate

Chad,

Do you have a timetable on when this growth rate will be ready? We are being asked to submit our volumes to Delaware County as soon as we can. If there is any way you can make this a high priority it would be greatly appreciated. Thanks again for your assistance. Please let me know if you need anything else from me. Justin

From: Chandra Parasa [mailto:cparasa@morpc.org]
Sent: Monday, November 26, 2012 4:21 PM
To: Humenny, Justin
Cc: Nick Gill
Subject: RE: Sawmill Pkwy / Seldom Seen Growth Rate

Justin, Thanks for your email. I was not in during thanksgiving holidays, got back today. We are currently working on your request. I will keep you posted on status.

Thanks, Chad

From: Humenny, Justin [mailto:jhumenny@emht.com] Sent: Monday, November 26, 2012 3:47 PM To: Chandra Parasa Subject: Sawmill Pkwy / Seldom Seen Growth Rate

Chad,

Can you please give an update on the status of the requested growth rate for Sawmill Parkway and Seldom Seen Rd area? Please let me know if you need any additional information.

Also, we have received some concerns from the neighboring condo community, regarding the impact of the future extension of Sawmill Parkway to Rt 42. Will this be accounted for in the growth rate? If not, can you please provide comments on how volumes on Sawmill Parkway will be affected by this future extension? Thanks for your assistance, it is greatly appreciated.

Justin Humenny, E.I. Traffic Engineer Intern

EMH&T

Engineers, Surveyors, Planners, Scientists 5500 New Albany Road, Columbus, OH 43054 v. 614.775.4647 | jhumenny@emht.com emht.com

From: Humenny, Justin [mailto:jhumenny@emht.com] Sent: Tuesday, November 20, 2012 7:44 AM To: Chandra Parasa Subject: RE: Growth rate request

Chad, I have attached a folder containing count data as excel files. Please let me know if you need anything else.

Thanks, Justin From: Chandra Parasa [mailto:cparasa@morpc.org] Sent: Monday, November 19, 2012 4:23 PM To: Humenny, Justin Subject: RE: Growth rate request

Is it possible to send to us, selectable text in pdf or excel. We usually upload this in our database.

Thanks, Chad

From: Humenny, Justin [<u>mailto:jhumenny@emht.com</u>] Sent: Monday, November 19, 2012 2:33 PM To: Chandra Parasa Subject: RE: Growth rate request

We did not conduct 24 hour counts. An 8 hour signal warrant count was taken at Seldom Seen Rd & Liberty Rd. AM and PM turning movement counts were taken at the following intersections:

Sawmill Parkway & Powell Rd Sawmill Parkway & Big Bear Ave Sawmill Parkway & Park Woods Ln Sawmill Parkway & Sawmill Dr Sawmill Parkway & Seldom Seen Rd Seldom Seen Rd & Bunker Ln

These are all of the intersections in our study area. We would just like an overall growth rate for this study area.

Thanks, Justin

From: Chandra Parasa [mailto:cparasa@morpc.org] Sent: Monday, November 19, 2012 2:15 PM To: Humenny, Justin Subject: RE: Growth rate request

Just curious if there were 24 hour counts conducted. Are Growth rates needed for Sawmill Parkway and Seldom Seen Road, or, please advise what other additional roadway segments.

Thanks, Chad

From: Humenny, Justin [mailto:jhumenny@emht.com] Sent: Monday, November 19, 2012 1:30 PM To: Chandra Parasa Subject: RE: Growth rate request

Chad,

I have attached count data for the 7 intersections in the Powell area. Please let me know if you need anything else.

Thanks, Justin From: Chandra Parasa [mailto:cparasa@morpc.org] Sent: Monday, November 19, 2012 12:55 PM To: Humenny, Justin Cc: Nick Gill; Hwashik Jang; Zhuojun Jiang Subject: RE: Growth rate request

Hi Justin,

Please email to us traffic counts that you have collected in that area. We would be using these data in our computations.

Thanks, Chad

From: Humenny, Justin [<u>mailto:jhumenny@emht.com</u>] Sent: Monday, November 19, 2012 12:52 PM To: Chandra Parasa Subject: Growth rate request

Chad,

I am working on a traffic study for a Lifestyle Communities development in Powell near the intersection of Sawmill Parkway and Seldom Seen Road. Could you please provide a background traffic growth rate for this area? We just finished a series of counts in the area, and I need to project these volumes to an opening year 2013, and horizon year 2033. If you need any additional information or have any questions please let me know.

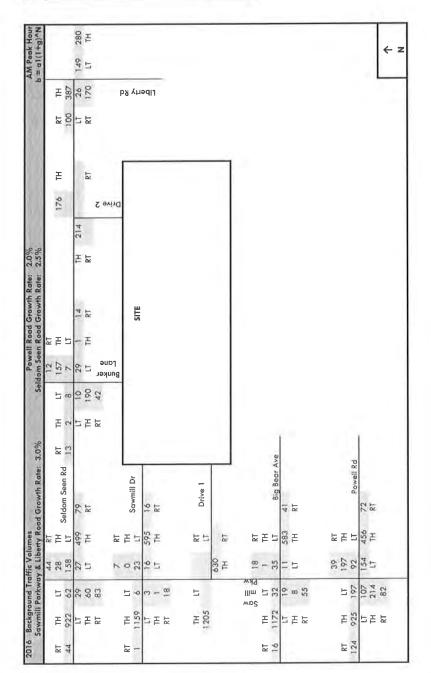
Thanks,

Justin Humenny, E.I. Traffic Engineer Intern

EMH&T

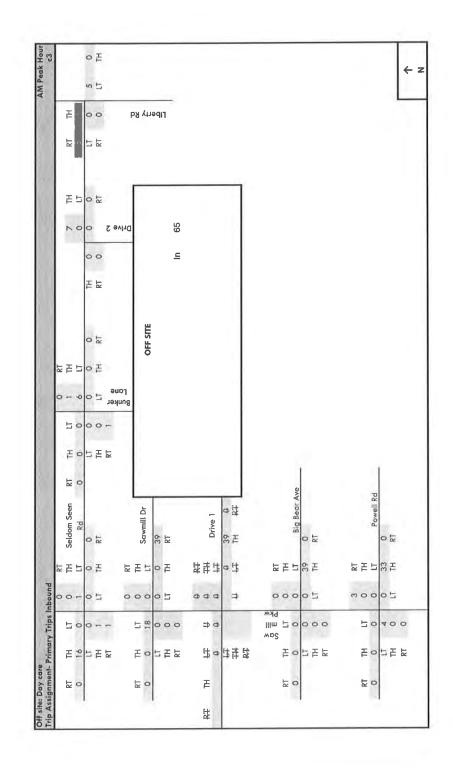
Engineers, Surveyors, Planners, Scientists 5500 New Albany Road, Columbus, OH 43054 v. 614.775.4647 | jhumenny@emht.com emht.com

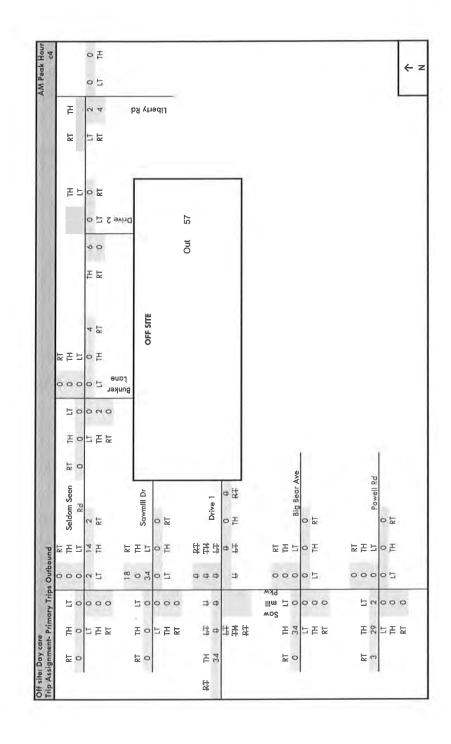
CONFIDENTIALITY NOTICE: This e-mail message is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. Any unauthorized review, use, disclosure or distribution is prohibited. If you are not the intended recipient, please contact the sender by reply e-mail and destroy all copies of the original message. If you are the intended recipient but do not wish to receive communications through this medium, please so advise the sender immediately.

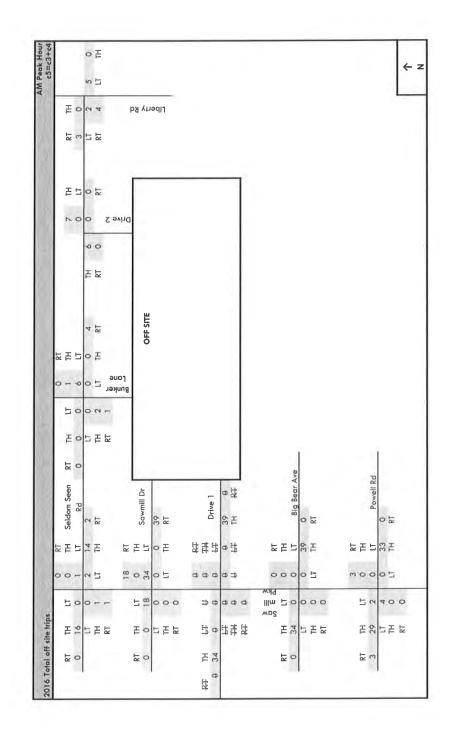

APPENDIX B:

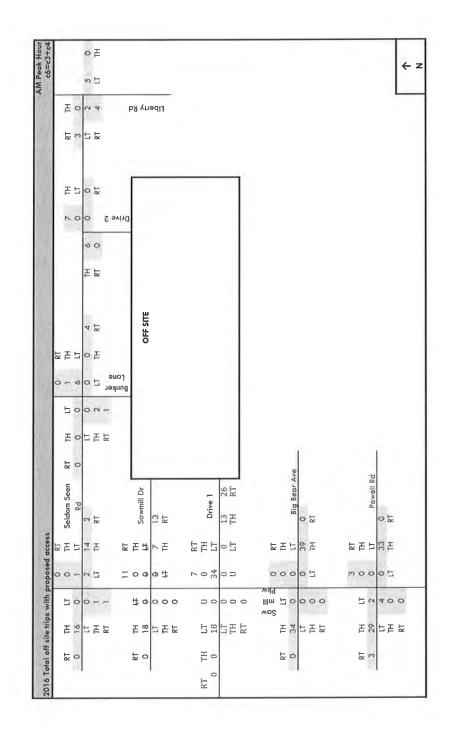
Traffic Volume Calculations

		249	E																			(
		132	5																			<u> </u>
	TH 344	24	401		F	A BO	per	11														
	RT 89	11	Y																			
					3	_		_		_	_		-									
	폰노	ł	¥			1																
	159	1	5 2	ð٨	Dri																	
		194																				
		E	R.																			
		14	×			1210																
1	호문 드		Ē																			
	142	29	, ^ב	əur əyu	ng																	
	5 00	01	42	1																		
	H o	57																				
	RT 13															e						
	en Rd					ň	Ι				-					Big Bear Ave					Powell Rd	
	ieldom Seen Rd	70	N N			Sawmill Dr	16	RT			Drive 1			561	ccc	Big	36	RT				RT RT
-	호표도	388	482	539	RT	문 :	529	H	561		RT	-	RT	1	고 문	5	518		a d	호표	LI I	TH 100
	40 25 153	24	5		1	0	16	11				560	E				1.1.5	5		182	85	25
	55	26	75		1	5 -	0 00	-	18		5	1		WD WD		28	19	8 55	1	Ŀ	175	76 76
	853 TH 759	5	E La	987	1047	HI HI	LT	H	RT	1087	THH 1087	1001			, cull	1063	11	H T		표	822	그는 돈
							_									14				RT	0	

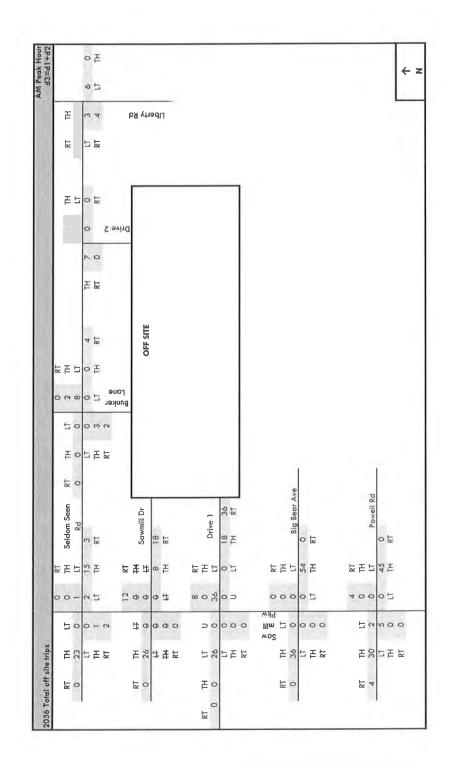

a1		249	Ŧ																						
1		132	5																						ľ
	TH 344	24	154			λ gq	et)	11																	
1	RT 89	LT	RT																						
	H		RT			Г			-		-	_		1											
	159			ç ə	vIv	1																			
		194	1																						
		표	RT																						
		4	RT			1	SILE																		
	다 H 너 H	-	폰																						
	11 142 6			ne ket	rai pnu																				
	500	-	-	-																					
	표 여	11	표 2	¥																					
	RT 13																0								
	Seldom Seen Rd	70	RT			Sawmill Dr	14	RT C			Drive 1				561 555		Big Bear Ave	36	RT				Powell Rd	64	N.
	RT LT S	445	HI	239	RT	王 :	520	문	561		RT	5	10	i.	RT	표	5	518	표		RT	H	11	405	-
	40 25 143	24	5		1	0	14	25					560 TH				35					182	85	137	5
ł	LT 55	26	54	?		5 -	0 ~		18		5				Pkw 50w	11	28	19	80	55	1	5	175	66	76
	913 819	11	는 t	1037	1037	TH	11		RT	1071	Ŧ	1021					1041					HL	822	57	E La
ų.					, -												1								

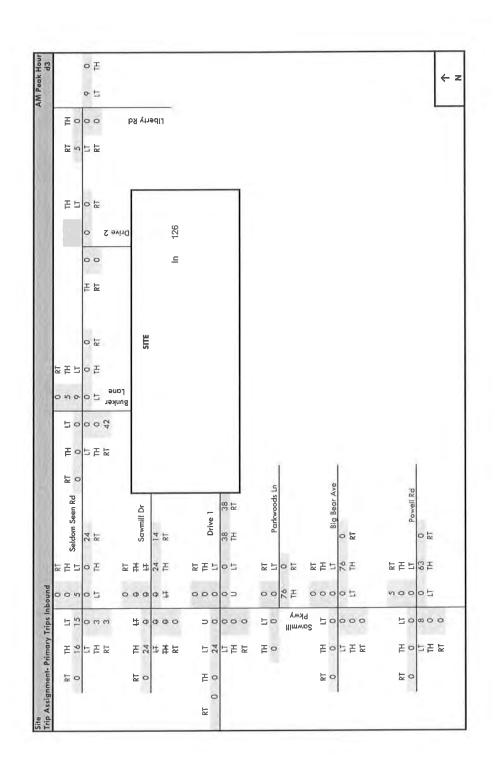

int	2016 Background Traffic Volumes RI/RO @ Sawmill Dr	d Trattic	Volumes			
				44	RT N	
	RT	표	5	28	Ħ	Seldom Seen
	44	922	62	158	ы	Rd
		11	29	27	499	79
		Ŧ	90	5	H	RT
		RT	83			
				1	RT	
	RT	H	11	*	F	
	1	1165	×	×	ы	
		11	*	×	598	22
		Ħ	*	Ц	Ħ	RT
		RT	10	_		
					RT	
	표	5	n	0	F	
	1169	0	9	23	5	Drive I
		11	0	0	16	614
		Ŧ		5	5	TH RT
		RT	80	-		
				Ħ	RT	

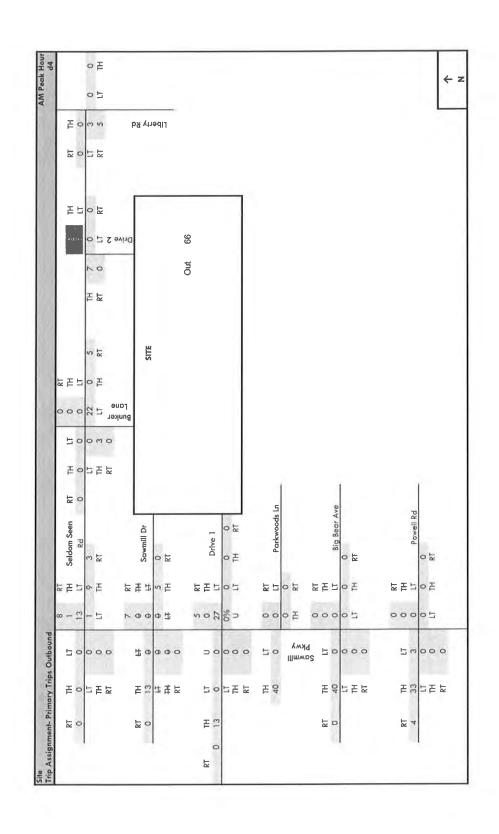


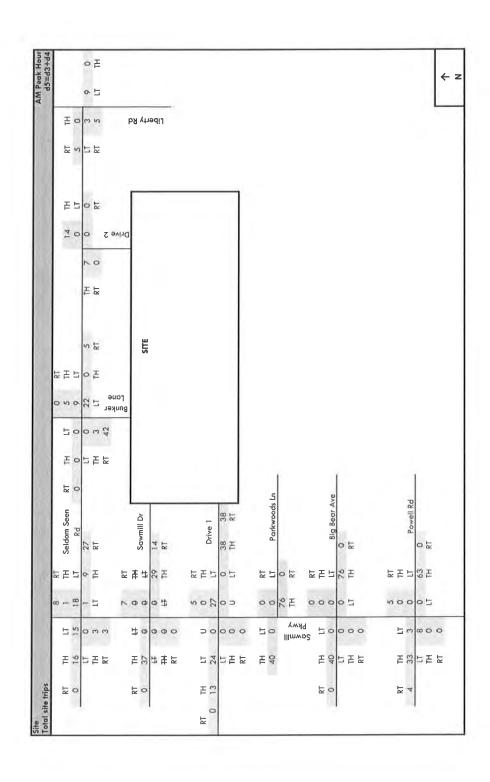

cl		폰								
1		17%								
8	푣		uA ga	Libe						
R.	RT 4%	RT								
	10									
1	Ħ	RT	1							
	11%	Drive 2								
8		%0								
1000	5	1H 12								
			SITE							
		RT	OFF SITE							
PTO	포도	Ŧ								
	2% 9%	raue gnuket ¹								
1	ц	2%								
	Ŧ	다면								
	RT						e S			
	Seldom Seen Rd	RT RT	Sawmili Dr	20% RT	Drive 1	20% 40% TH RT	Big Bear Ave	RT	Powell Rd	RT
	LT Se	E F		0% TH	다 H 다	1	다 너머 머니	%	RT LT	% H
81.	_				ш н –		-49		4%	LT 1
noqui	2%	5	-	-		2	БКЖ	5	100000	-
y trips	5	2%	0%0		0%0		2aw 2aw		5	6%
rumar	TH 25%	고 포 교	TH 29%	RT	LT 29%	TH F	뇬	다 표 교	표	다. 더 더 더
Inp Distribution - Frimary Linps Inbound	RT		RT		F		RT		RT	
DIST					RT					

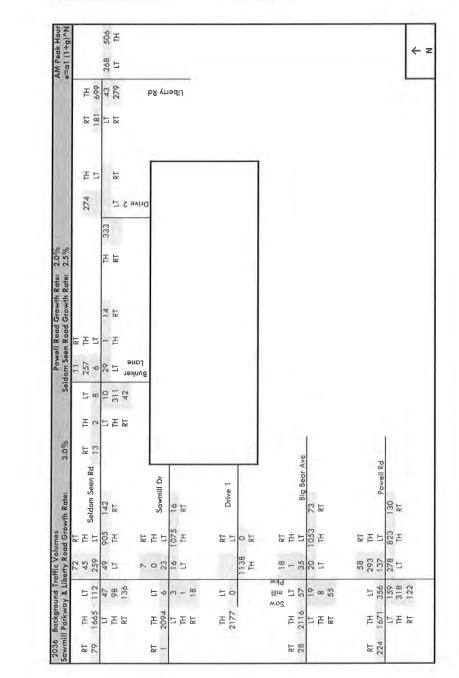
AM Peak Hour c2		F								+
AM Pe		5								Ĺ
	Ŧ	4%	y Rd	Libert						
	RT	RT								
			÷							
	Ŧ	RT								
		e 2	Driv							
		11%								
		RT								
		1		Ë						
		7% RT		OFF SITE						
	친표 다									
	%0	ve ket ⊒	rai Bun							
	5	4%								
	Æ	다 H La								
	RT						9		70	
	Seldom Seen Rd		Sawmill Dr		Drive 1	RT	Big Bear Ave		Powell Rd	
	Seldom	4% RT	Sawn	RT	Driv	Ŧ	ŝ	RT		RT
	다 퍼 라	25% TH	R	13% TH	RT LT TH	ц.	자 H 다	Æ	전문고	臣
	1	4% LT	20%		13%	∍		5		5
Urt site: Utrice and Uay care Trip Distribution - Primary Trips Outbound	LT				Þ		۲ ۲ ۱۳۳۲ ۲		LT 4%	
Off site: Office and Day care Trip Distribution - Primary Trip		나무보	TH	RT RT	ь	R 귀디		다 H L	TH 50%	TH T
2	RT		RT		НТ %0		RT		RT 6%	
tion - F										

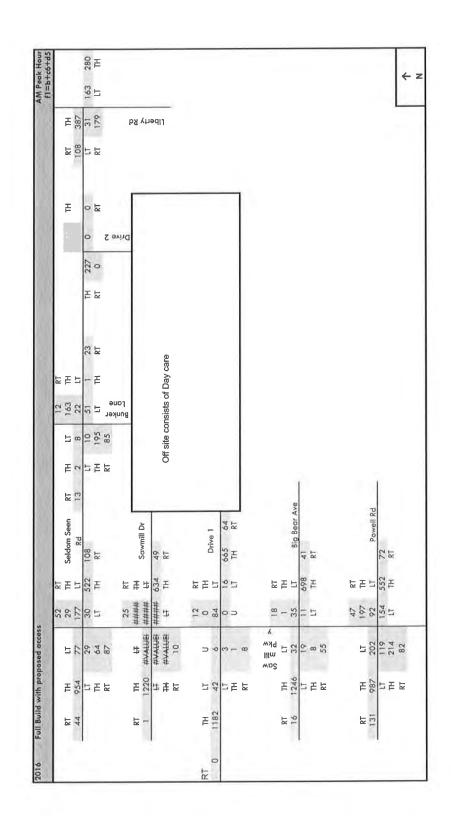


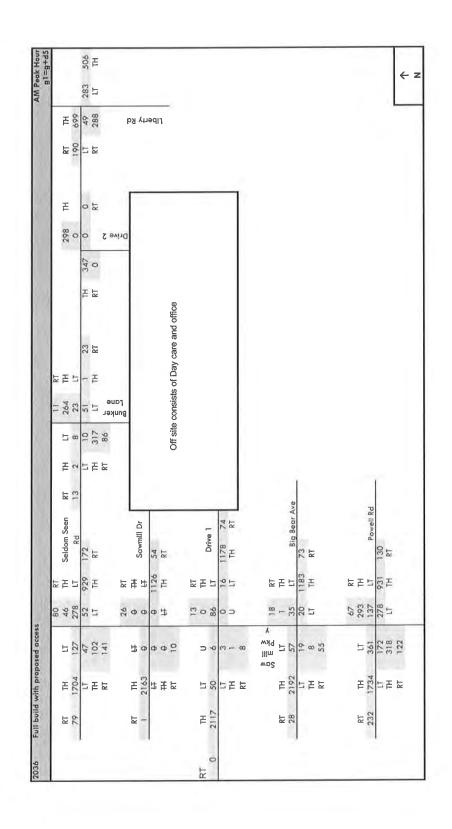



p			머										+
q		-	° 1										
	Ŧ		00		iy Rd	ıədl	1						
	RT	!	5										
		l											
	Ĕ !	-	RT O		Γ								
	0 0		0	Drive 2			06						
		-	00		1		E						
			μIJ										
			RT 0		OFF SITE								
	TA FT	-	οE			•							
	0 11 0	0	05	raue Bruket									
ł		1	00										
	王 e	0	드루	RT									
ļ	RT	0								0			
	en Rd	1			ľ	Γ		-	36 RT	Bia Bear Ave		Powell Rd	
	Seldom Seen Rd		RT O		Sawmill Dr	18	RT	Drive 1	18	Big	RT O	4	RT 0
	남남	3	우문	RT	# 1	0	폰	다 다 다 다	105	보프브	54 TH	정표디	45 TH
	00,		05	0	• •	0	出	000		000	10	400	05
	E.		0	5	\$ a	0	00	⊃ ⊂		o ⊑ milt Saw	000	50	000
nunoqui edui	1 - 1	111	5 문	RT	표 %	2 1	₽₽	LT 226	TH LL		다표교	돈 이	그는 교
nunonin edut Amun	王的	57	= F			11.11							
nunonini edut Aminini - umanina Biese ditt	RT	1	T		RT C			Ŧ		MI O		RT 0	

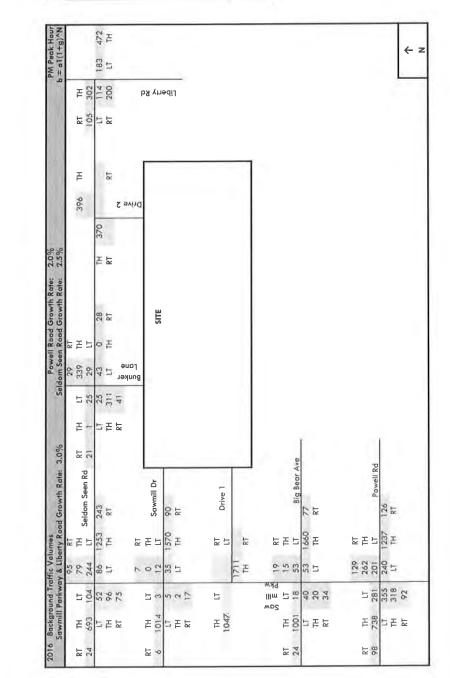

CP 03			c	F	5																				•
d2			0	.=																					Ľ
		Ŧ	0 0	. 4			вя	ų۸	ədi	1															
1000		ž d	-	ET A																					
	;	5		RT			Г	-		_			-	-	1										
-		5 0	0	, ti	5	Drive					60	3													
			7	. 0	,						ţ,	50													
			H	RT .																					
								щ																	
			4	RT				OFF SITE																	
	RT	ΞĿ	c	F																					
	0	0 0	0	5	ie (et	lan Buni																			
	2	50	0	1	0																				
	-	E c	11	H	RT																				
	ź	N C	>																						
		Deldom Seen	100	RT				Sawmill Dr	0	-			Drive 1	0				Dia Base Aus	C IDan Bin	RT			-	0 Powell Kd	5
9																							· · ·	13	
B	RT 1							Ń	8					0				폰 브						0	
	0 0	00	0	11		2	0	0	0	\$	-	00	0.46	5	>	-	٨	0 0	0	5	÷	0	00	00	5
Inp Assignment- Primary Irips Outboun	Ŀ	50	0	0	0		\$	0	Φ	•	D		50	2			Pkw IIm Sav	50	0	00	>		50	101	0 0
nary Iri	- Fr	<u></u> c	11	H	RT		革	0	4	# 1	KI		50	5	E TS		p	H %	LT	문 1	E.		분 S	25	RT
ment- Pru	ž	20					RT	0					臣 <	>				RT O	>				RT	4	
Assign													RT						1						

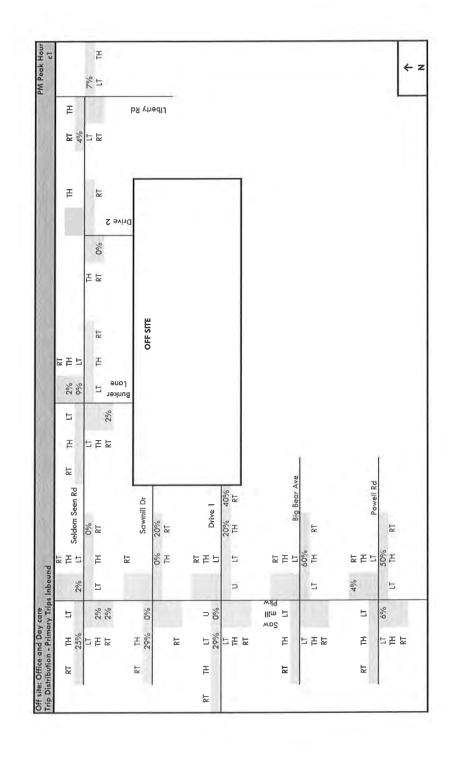

(\CMHDATA01 \Project01 \20142045 \Calculations \Traffic \Trip Gen \2014 2014 2045 Trip Gen.xls

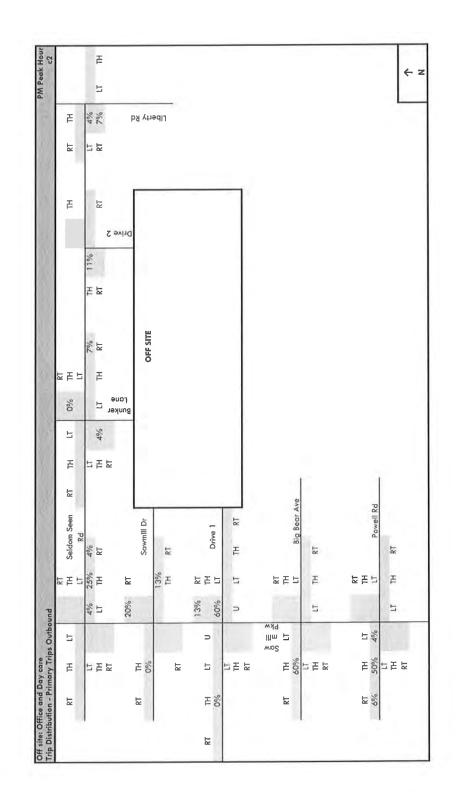


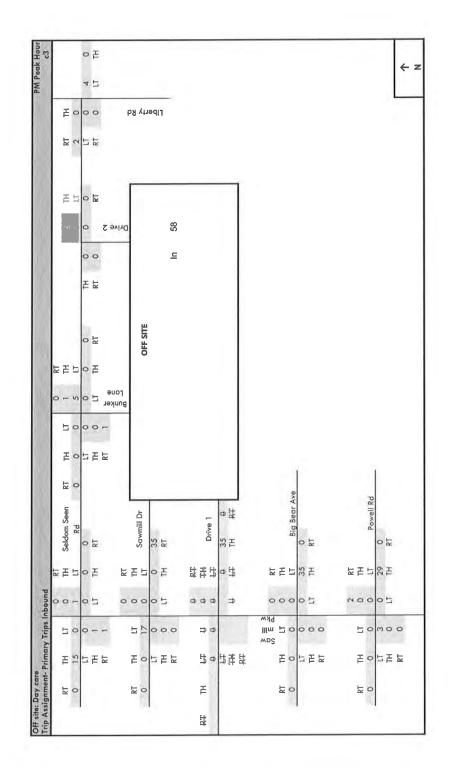

Seldom Seen Rd o ta Sawmill Dr Drive 1 1122 TH 142 RT 22 TH LT 7H 7H 대 대 대 대 다 문 다 않 다 RT 72 45 49 49 11 N * * * 5 00300 西 2036 Background Traffic Volumes RI/RO @ Sawmill Dr 112 47 98 98 136 5 × × × 2 0 - 0 0 - 0 2100 LT RT RT RT 10665 50512 TH 2104 79 RT RT

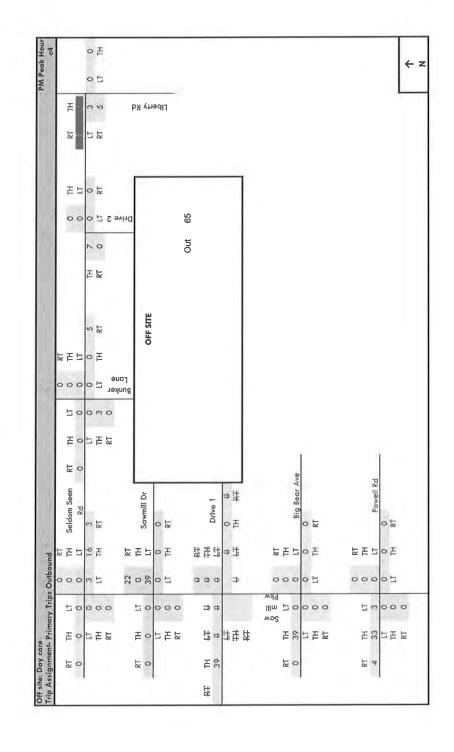
k Hour		280 TH															←
AM reak Hour		154 LT															
	TH 387	28 174		ւլչ Քվ	əqıı												
	RT 103	LT RT															
	- T	RT		Ē		_		_	1								
	83 TH 0																
	- 1	2	S eviro														
		220															
		RT															
		18 RT															
	정보고	- 2			Ð												
	12 158 13	29 LT	raue gnuker		Off site consists of Day care												
	1 8	1		1	sists of												
	~ 독	5 문	RT		ite con												
	RT 13				Offs											Ť	
	Seldom Seen Rd	81 RT		Sawmill Dr	55 RT		Drive 1	669 0				41 Al	RT			72 TOWEIL NO	ž
	RT HT S	513 TH	RT	H L	595 TH	堆	∄≒	0	t	RT	문 년	622	Ŧ	RT	표 년	489	E
	44 28 159			0 10	16 LT	0	00	0:	Þ	18		11	5	42	197	154	5
011-2110	LT 62	29 61	-	-	0 - 8	1	⇒∘	00	0 0	Pkw wal	LI CC	19	8 55		100	111	82
snid pu	TH 938	5 문	RT	TH 159	TH TH		4 0	47	₽₩	Saw	TH	LT	RT			100	RI H
packground plus on-site	RT 44			RT			TH 1239				RT 1.4				RT 1.77		
2010																	

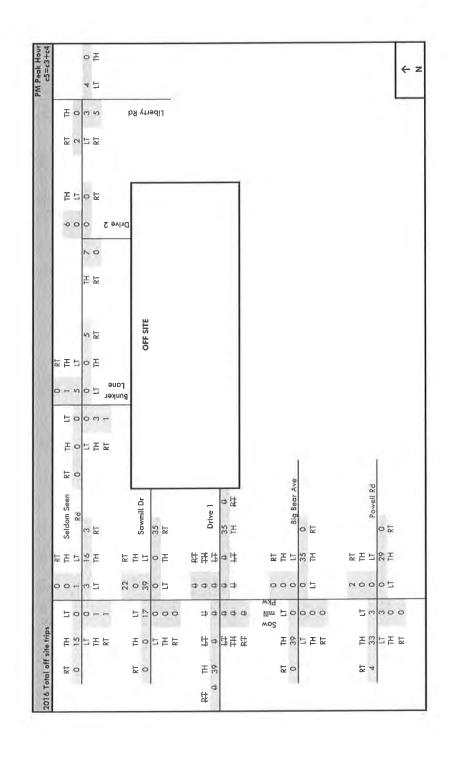

		506 FH											
		274	7										
臣		46 283	201	PA Kq	Liber								
RT		L1 R1	2										
₽		o 12		Г									
284	2		S evino	1									
ſ		340	1	1									
		ΗL			<u>8</u>								
					and off								
		18 RT			y care	'n							
보고	5	~ 표			s of De								
11 259	14	29	raue gnuket		consist								
_	-	314	-	1	Off site consists of Dav care and office								
臣	3	5 폰	RT		-								
RT	13								10				
ā	Ben Ka			à		5	36 RT		Big Bear Ave			Powell Rd	
-	Seidom Seen Kd	145 RT		Sawmill Dr	40 RT	Drive 1	1140 TH		Big 73	RT			130 RT
TH H	·	920 TH	RT	青串	H1 1097	토토리	16 LT	RT	LT 1107	Ŧ	RT 1	55	868 TH
72 45	260	15 11	10		\$	8 0 8	00	18	35	5	62	137	278 LT
		66		\$	10	⊃ ∘0	m – ∞		LT 57		Ŀ	358	164 318 122
Ŧ	1688	5 폰	RT	TH 2126	바륨교	LT 26	러고		RT TH 28 2152 LT	년 년 8	2	1701	다면 날
RT	52	5 폰		RT -		TH 2104			RT 28		Į	228	
						RT	-						_



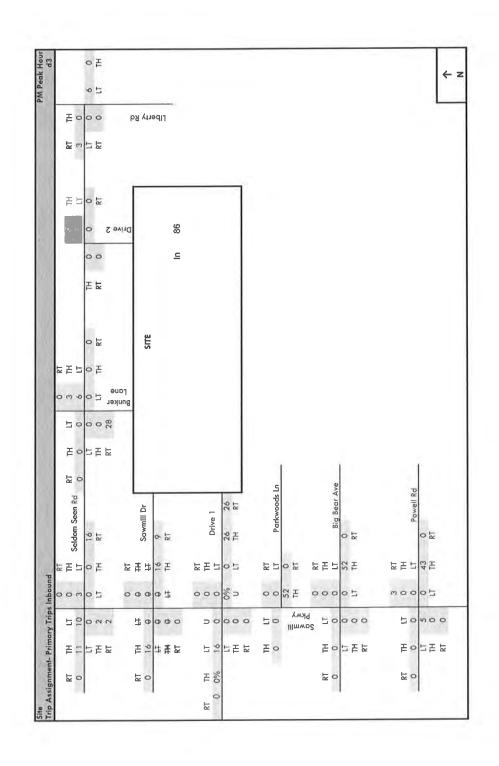

	419	E																		
	163	5																		
H.	103	181		ıλ gq	lber	1														
RT	5	¥																		
푸너	×	a:		Γ	-				-	1										
359 X	×	5 2	9vive																	
	335	×																		
	¥ :	¥																		
	28	RI		Ę	1110															
ta H Li	0	E																		
26 26	43	ہ 10	raue gnuke																	
LT 25	-	-	-																	
£ -	5	H T																		
RT 21													e							
Seldom Seen Rd	216	KI KI		Sawmill Dr	06	RT		Drive 1			1529 1534		Big Bear Ave	RT				Powell Rd	112 RT	
TH TH	1086	1378	1398 PT	같품 5	1386	TH HI		RT	×	RT	RT	Ħ	1475	H			Z F	5	1099 TH	
86 72 231	10			. 0 2				××		돈	61	15	53	EL :			611	186	213	
LT 92	47	89	-	50	2	2		۲×	;		Saw Will Wyg	5	40	20	34		11	250	328	20
739 TH 626	5	R H	925 877	HI	LT	H 12	897 945	HL					883		RT	026	566	656	5 H	ta
				RT 4								RT						87		

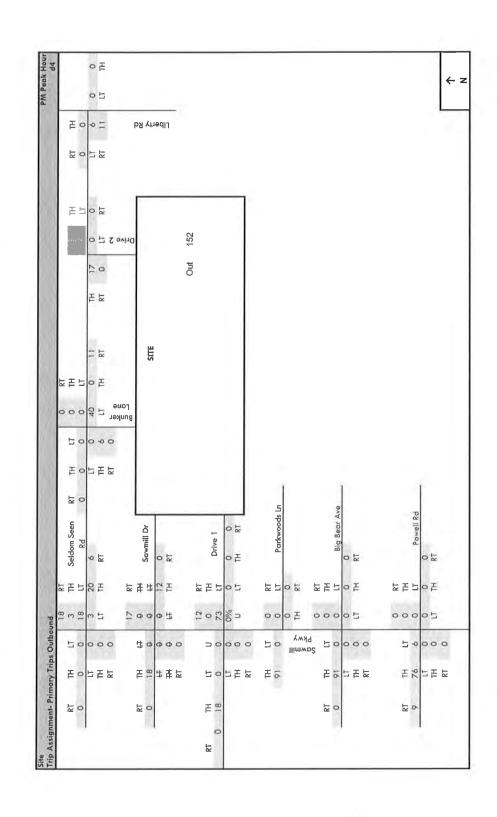

10		419 TH																					+
		163 IT	5																				
	HT	103	5		IA BA	₽qIJ																	
	RT 03	LT	2																				
	E 5	X	2		Г			-				1											
	359	×	5	Drive																			
		335 X	ē.																				
		H F	2																				
		28 RT			SITE																		
	년 고 고 고	이문																					
	26 307	43	s st	raue gauke																			
	LT 25	25	41																				
	E 4	노권	RT																				
	RT	1													e								
	Seldom Seen Rd	216 RT			Sawmill Dr	06	N N		Deiva 1		1		1534 1534		Big Bear Ave	68	RT				Powell Rd	112 RT	
	다 고 프 다 S	1115 TH	1407	1407 RT	분년	1395	1520		RT	5	×		RT						RT		L	1099	
	86 72 221	76		~	12	35	5		×	×	1520 TH		19									213	
	11	47 87	68	1	50	50	12		ы	×			Pkw mili	5	16	40	20	34		5	250	328 294	85
	729 TH 616	5 곱	RT	905 910	HI 901	57	E La	930	E E	630									603				
	RT				RT 6									RT	51					RT	87		

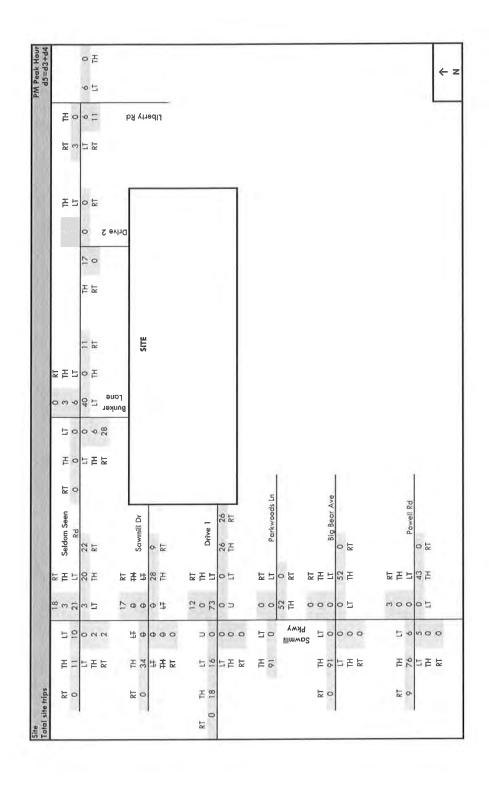

Seldom Seen 12 Sawmill Dr Drive 1 Rd 1679 TH 243 RT RT 93 LT LT TH TH RT LT 575 575 다 H 다 Se 다 1a 0200 95 79 244 86 LT N * * * 5 문 2016 Background Traffic Volumes RI/RO @ Sawmill Dr LT 52 96 75 5× × × 2 DWWWD TH 11 POPER TH 1024 RT 24 RT 0 tao



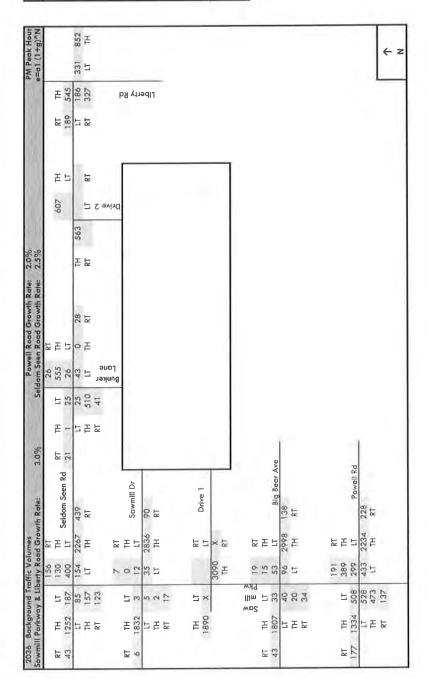


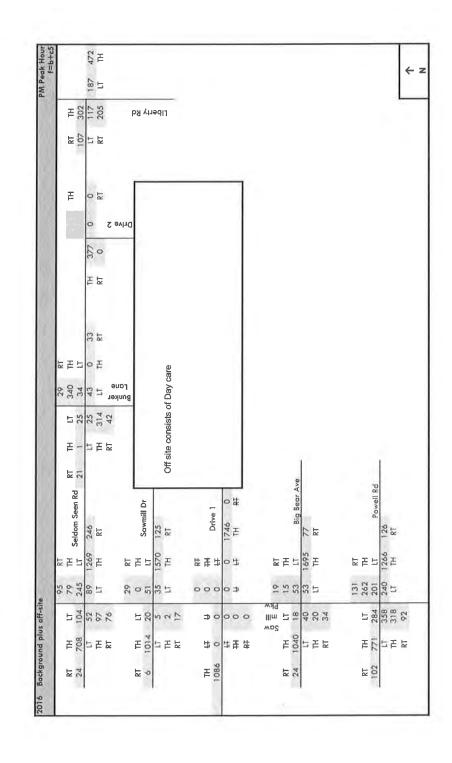

c3+c4		0	Ŧ															
c6=c3+c4		4	5															ľ
	Ηo	0	5	ŀ	чу Вс	ıədiJ												
-	RT 2	17	RT															
	H L	0	RT					_		ſ								
	90	0	5	Drive														
		7	0															
		H	RT															
		5	RT		OFF SITE													
	RT TH LT	0	표		Ö													
	0 - 9	0		uoj yung														
3	L] O	0	m															
	분 c	Ц	년 년															
	RT 0											ve						
	Seldom Seen Rd	2	RT		Sawmill Dr	12 RT	1	Drive 1	12 23 TH RT			Big Bear Ave	0 FT				0 DT	10
555	RT LT	16	표	RT	금 박	∞王	RT	E 1	CT 0		RT	ξĿ	35 TH		RT	골 :	5	
proposed access	00-	9	5	13	0 0	ΦЦ	00	0 36	0 7		0	00	0 5	i.	2	00	0	5
	50	0			\$ a	000	>	D 0	00	0	Bkw mili	50	00	0		50	0,000	0 0
ZUID IOTAL OTT SITE TTIPS WITH			HT IN		HI L	5 주 당	VI.	LT 17	LT TH	RT	Saw	39 1H				두 :		La
al off \$11	RT				RT			D HT				La o	1			RT	Ŧ	
10 1 01		1				l		RT 0									1	

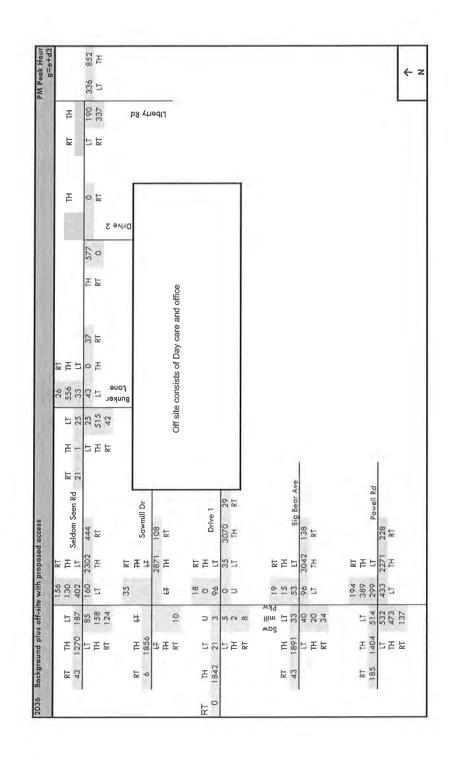

IP		∘₽									
lp	- 1	5									
8		00	F	LIY RO	edij						-
	а К	LT RT									
	Η	RT RT	3				٦				
ŝ	@ 0	0	Drive 2		73						
		00			드						
		RT									
		RT O		OFF SITE							
	고 문 너	0 원		0							
ļ	0-1	아님	rave gnuket								
8	50	00	~								
8	₽o	5 문	RT					0			
ľ	R O							Ae	2	σ	
	Seldom Seen Rd	0 RT		Sawmill Dr	15 RT	ive	15 29 TH RT	Big Bear Ave	RT	Powell Rd	81 N
P	TH H	이 된	RT	青华	6 문	교문다	50	다 H 다	44 TH	티코리	37 H
Inpodul	000	0 5	0	• •	οц	000	5	000	0 5	m 0 0	10
ary trips	50	0 -	-	<u>ц</u> о	000	20	-	o ⊑ mill Saw	000	50	400
nt- Prime	HT 81	5 문	RT	7 H	≄ # եշ	21	TH RT		다 푼 눈	돈 이	TH F
Trip Assignment- Primary Trips Inbound	RT O			RT O		Ŧ		7 O		NT O	÷.,
rip As	-					RT	-				

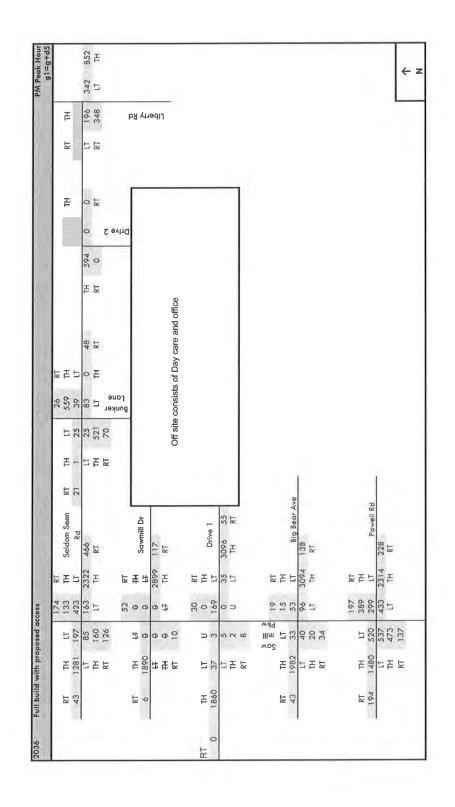

d2			•	0 2	8																		+
d2	10																						
		王。		4 0	2	I	к Ва	κµe	əqıı	-													
		RT	0	17	Z																		
		₽!	11	0 6	IN.		Γ		_				1	1									
		0 0	0	0 1	5 2 6	Drive	139																
and the second se				4 0	>						Out												
				Eb	2																		
				9	2			OFF SITE															
	RT	돈 !	=	0]	5			0															
	0	0 0	0	0 5	e et	rau Bunk																	
	-	-	1	150	00																		
The second s		H .	0	52	E F																		
		RT	0														e						
		Seldom Seen	Rd	5	2				0	Ĩ¥.		Drive 1	0 0 TH RT				Big Bear Ave 0	RT			Powell Rd	RT	
	RT	₽!	EL C	25 12	-	RT	₽	#	18	Ē	RT	H	05		RT	₽!	- 0	표		두	5	a 문	
pu	0	0 0	0	•	5	28	•	0	0	\$	18	0 84	5		0	0 0	00	Ц		00	000	5	
Cutbou		5	0	0 0	00	1	4	0	Φ	¢C	,	∍ 0		1	Pkw Mill Saw	5	00	00	>	Ŀ		00	0
ary Trip		~ 년 《	0	52	RT		표	0	\$	ŧ 5	2	50	노프	RT	3	H	11 84	폰 b	ž	귵	70	금	RT
Trip Assignment- Primary Trips Outbound		RT o	0				RT	0				는 o				RT	0			PT	2 00		
Assignt			1									RT					1				-		

5/6/2015 11 of 20








Seldom Seen ota Sawmill Dr Drive 1 439 RT 3055 TH 81 93 RT LT 2267 TH RT 11 11 <u> 김 영</u> 너 북 명 La la 156 130 154 154 N * * 00200 표 ×5 2036 Background Traffic Volumes RI/RO @ Sawmill Dr LT 187 85 157 123 5 × × × ? D M M M W H 다 1252 TH LT TH RT RT 다이다보험 TH 1842 RT 43 12 0 RT

PM Peak Hour f1=b+c6+d5		472 TH								
Fd=11		193								
	TH 302	123 216	ty Rd	Liber						
	RT 110	LT RT								
	Ŧ	RT RT	-							
	114	rive 2 O	a							
		394								
		RT R								
		44 RT		ð						
	F H F	ㅇ 푼		Day ca						
	29 343 40	raue nuker 1 3	a	Off site consists of Day care						
	LT 25	25 320 70		site cor						
	루 ~	다 H 보		Off						
	RT 21		-					0		
- all	Seldom Seen Rd	268 RT	Sawmill Dr	114 RT	Drive 1	1717 49 TH RT	c	77 RT RT	Powell Rd	126 RT
	RT LT	1289 TH	2 # 4	1611 TH	TH RT LT	35 LT	TH F	1747 TH	토포노	1309 TH
access	113 82 266	92 LT	*****	####	20 0 124	0 0	15	53 53	134 262 201	240 LT
Dosea ac	LT 114	52 99 78	++++++	101	⊃ m	50 10 00	bkw 20w 20w	40 20 34	LT 290	363 318 92
vitn pro	TH 719	다분보		바람날	33 11	다 문 도		다 H L	TH 847	고 표 교
ruit putta with proposed	RT 24		RT &		TH 1042		RT	14	RT 111	
102					0					

APPENDIX C:

Signal Warrant Analyses

OMUTCD Warrant 1 Liberty Road & Seldom Seen Road

2016 Background Traffic - No RT Reduction

CONDITION	# OF	L	IBERTY R	D	SEL	DOM SEEN	I RD		Condi	tion A			Condi	tion B	_
	LANES	1-WAY	1-WAY	2-WAY	1-WAY	1-WAY	1-WAY	MAJ	MIN	MAJ	MIN	MAJ	MIN	MAJ	MI
			1			1			1.0	80%	80%			80%	80
Standard	1			x			x	500	150	400	120	750	75	600	6
Standard	2+							600	200	480	160	900	100	720	8
High Speed	1							350	105	280	84	525	53	420	4
High Speed	2+				1 1 3			420	140	336	112	630	70	504	5
7-8 AM		434	490	924	202		202	YES	YES	YES	YES	YES	YES	YES	Y
8-9 AM	1	346	391	737	196		196	YES	YES	YES	YES	NO	YES	YES	Y
9-10 AN	1	300	281	580	151		151	YES	YES	YES	YES	NO	YES	NO	Y
10-11 AN	M	224	244	468	163		163	NO	YES	YES	YES	NO	YES	NO	Y
11-12 NO	N	240	266	506	145		145	YES	NO	YES	YES	NO	YES	NO	Y
12-1 PM	r j	250	222	472	152		152	NO	YES	YES	YES	NO	YES	NO	Y.
1-2 PM		260	247	507	196		196	YES	YES	YES	YES	NO	YES	NO	Y
2-3 PM		315	316	631	194		194	YES	YES	YES	YES	NO	YES	YES	Y
3-4 PM		485	360	845	243		243	YES	YES	YES	YES	YES	YES	YES	Y
4-5 PM		562	409	971	254		254	YES	YES	YES	YES	YES	YES	YES	Y
5-6 PM		659	409	1068	322		322	YES	YES	YES	YES	YES	YES	YES	Y
6-7 PM		554	378	932	294		294	YES	YES	YES	YES	YES	YES	YES	Y
7-8 PM		388	239	627	247		247	YES	YES	YES	YES	NO	YES	YES	Y
					Hours Met	-		11	12	13	13	5	13	8	1

Hours Warrant Met

Warrant Satisfied ?

Condition A : MET

13

YES

Condition B : NOT MET 80% of Condition A and B : NOT APPLICABLE

10

YES

5

NO

8

YES

Hour	Northbound	Southbound	Eastbound
7am-8am	385	440	175
8am-9am	307	351	170
9am-10am	266	252	131
10am-11am	199	219	141
11am-noon	213	239	126
noon-1pm	221	196	134
1pm-2pm	230	218	173
2pm-3pm	278	279	171
3pm-4pm	428	318	214
4pm-5pm	496	361	224
5pm-6pm	582	361	284
6pm-7pm	489	334	259
7pm-8pm	343	211	218

Hour	Northbound	Southbound	Eastbound
7am-8am	434	490	202
8am-9am	346	391	196
9am-10am	300	281	151
10am-11am	224	244	163
11am-noon	240	266	145
noon-1pm	250	222	152
1pm-2pm	260	247	196
2pm-3pm	315	316	194
3pm-4pm	485	360	243
4pm-5pm	562	409	254
5pm-6pm	659	409	322
6pm-7pm	554	378	294
7pm-8pm	388	239	247

Warrant 1 Seldom Seen Road & Bunker Drive

2016 BUILD - Estimated 8th High Hour (2-3PM): Not met

CONDITION	# OF	SEL	DOM SEEN	RD	BL	INKER DRI	VE		Condi	tion A	-	Condition B			
	LANES	1-WAY	1-WAY	2-WAY	1-WAY	I-WAY	1-WAY	MAJ	MIN	MAJ	MIN	MAJ	MIN	MAJ	MI
			1		- A					80%	80%			80%	80
Standard	1						16-16	500	150	400	120	750	75	600	6
Standard	2+							600	200	480	160	900	100	720	8
High Speed	1			х			х	350	105	280	84	525	53	420	4
High Speed	2+							420	140	336	112	630	70	504	5
										-					
7-8 AM							0	NO	NO	NO	NO	NO	NO	NO	N
8-9 AM				1 0 11			0	NO	NO	NO	NO	NO	NO	NO	N
9-10 AN	1						0	NO	NO	NO	NO	NO	NO	NO	N
10-11 AN	M			1 1 1			0	NO	NO	NO	NO	NO	NO	NO	N
11-12 NO	ON						0	NO	NO	NO	NO	NO	NO	NO	N
12-1 PM	1			8			0	NO	NO	NO	NO	NO	NO	NO	N
1-2 PM				1 8			0	NO	NO	NO	NO	NO	NO	NO	N
2-3 PM		246	244	490	49		49	YES	NO	YES	NO	NO	NO	YES	Y
3-4 PM							0	NO	NO	NO	NO	NO	NO	NO	N
4-5 PM							0	NO	NO	NO	NO	NO	NO	NO	1
5-6 PM		415	412	827	83	1 1	83	YES	NO	YES	NO	YES	YES	YES	Y
6-7 PM							0	NO	NO	NO	NO	NO	NO	NO	1
7-8 PM			1.1.1.1.1.				0	NO	NO	NO	NO	NO	NO	NO	۲
ased on hourly	variation a	at Seldom S	een/Liberty		Hours Met			2	0	2	0	1	1	2	
59.30%					Hours Wa	rrant Met			0		0	1.1	1		2

Hours Warrant Met Warrant Satisfied ?

Condition A : NOT MET

NO

NO

NO

Condition B : NOT MET

80% of Condition A and B NOT MET

Warrant 1 Seldom Seen Road & Bunker Drive

2036 BUILD - Estimated 8th High Hour (2-3PM): NOT MET

CONDITION	# OF	SEL	DOM SEEN	RD	BL	INKER DRI	VE		Condi	tion A		Condition B			
	LANES	1-WAY	1-WAY	2-WAY	1-WAY	1-WAY	I-WAY	MAJ	MIN	MAJ	MIN	MAJ	MIN	MAJ	MI
				1	1.	1				80%	80%			80%	80
Standard	1			1				500	150	400	120	750	75	600	6
Standard	2+							600	200	480	160	900	100	720	8
High Speed	1			х			х	350	105	280	84	525	53	420	4
High Speed	2+		1.1					420	140	336	112	630	70	504	5
5 1						<u></u>									
7-8 AM	-						0	NO	NO	NO	NO	NO	NO	NO	N
8-9 AM							0	NO	NO	NO	NO	NO	NO	NO	N
9-10 AM	1						0	NO	NO	NO	NO	NO	NO	NO	N
10-11 AN	л				8		0	NO	NO	NO	NO	NO	NO	NO	N
11-12 NO	ол						0	NO	NO	NO	NO	NO	NO	NO	N
12-1 PM	í						0	NO	NO	NO	NO	NO	NO	NO	N
1-2 PM							0	NO	NO	NO	NO	NO	NO	NO	N
2-3 PM		370	365	735	49		49	YES	NO	YES	NO	YES	NO	YES	Y
3-4 PM						8	0	NO	NO	NO	NO	NO	NO	NO	N
4-5 PM							0	NO	NO	NO	NO	NO	NO	NO	N
5-6 PM		624	616	1240	83		83	YES	NO	YES	NO	YES	YES	YES	Y
6-7 PM							0	NO	NO	NO	NO	NO	NO	NO	N
7-8 PM							0	NO	NO	NO	NO	NO	NO	NO	N
ased on hourly	variation a	t Seldom Se	een/Liberty		Hours Met			2	0	2	0	2	1	2	
59.30%			-		Hours Wa	rant Met	1.0)		0		1		2

Hours Warrant Met Warrant Satisfied ?

Condition A : NOT MET

NO

NO

NO

Condition B : NOT MET

80% of Condition A and B 👘 NOT MET

Warrant 1 Seldom Seen Road & Bunker Drive

2036 BACKGROUND - Estimated 8th High Hour (2-3PM): NOT MET

CONDITION	# OF	SEL	DOM SEEN	RD	BL	NKER DRI	VE		Condi	tion A		Condition B			
	LANES	I-WAY	1-WAY	2-WAY	1-WAY	1-WAY	1-WAY	MAJ	MIN	MAJ	MIN	MAJ	MIN	MAJ	MII
										80%	80%			80%	80
Standard	1					4 1 1		500	150	400	120	750	75	600	6
Standard	2+							600	200	480	160	900	100	720	8
High Speed	1			х			х	350	105	280	84	525	53	420	4
High Speed	2+					0 8		420	140	336	112	630	70	504	5
7-8 AM	1.1					5	0	NO	NO	NO	NO	NO	NO	NO	N
8-9 AM	- N						0	NO	NO	NO	NO	NO	NO	NO	N
9-10 AN	1						0	NO	NO	NO	NO	NO	NO	NO	N
10-11 AN	vi						0	NO	NO	NO	NO	NO	NO	NO	N
11-12 NO	NC						0	NO	NO	NO	NO	NO	NO	NO	N
12-1 PM	1						0	NO	NO	NO	NO	NO	NO	NO	N
1-2 PM						15 - 18	0	NO	NO	NO	NO	NO	NO	NO	N
2-3 PM		365	345	710	47		47	YES	NO	YES	NO	YES	NO	YES	Y
3-4 PM							0	NO	NO	NO	NO	NO	NO	NO	N
4-5 PM							0	NO	NO	NO	NO	NO	NO	NO	N
5-6 PM		615	582	1197	80		80	YES	NO	YES	NO	YES	YES	YES	Y
6-7 PM							0	NO	NO	NO	NO	NO	NO	NO	N
7-8 PM	-						0	NO	NO	NO	NO	NO	NO	NO	N
ased on hourly	variation a	at Seldom S	een/Liberty		Hours Met			2	0	2	0	2	1	2	1
59.30%					Hours Wa				0		0		1		2

Hours Warrant Met Warrant Satisfied ?

Condition A : NOT MET

NO

Condition B : NOT MET

NO

NO

80% of Condition A and B : NOT MET

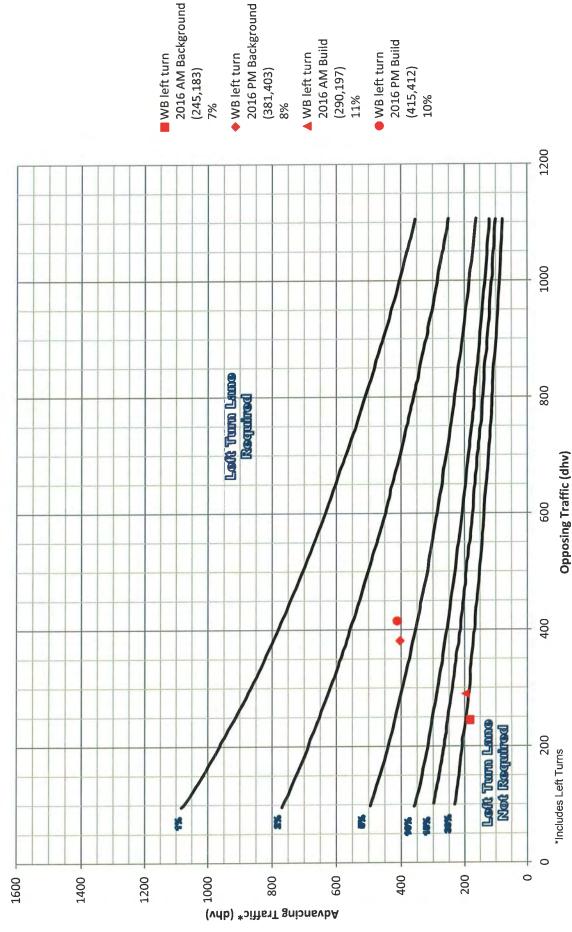
Warrant 1 Sawmill Parkway & Drive 1

2016 BUILD - Estimated 8th High Hour (2-3PM): MET

CONDITION	# OF	SAW	MILL PARK	WAY		DRIVE 1		-	Condi	tion A		Condition B			
	LANES	I-WAY	1-WAY	2-WAY	I-WAY	1-WAY	1-WAY	MAJ	MIN	MAJ	MIN	MAJ	MIN	MAJ	MIN
										80%	80%			80%	80%
Standard	1						1 1 1	500	150	400	120	750	75	600	60
Standard	2+							600	200	480	160	900	100	720	80
High Speed	1						х	350	105	280	84	525	53	420	42
High Speed	2+			х				420	140	336	112	630	70	504	50
													-		-
7-8 AM							0	NO	NO	NO	NO	NO	NO	NO	N
8-9 AM	í -						0	NO	NO	NO	NO	NO	NO	NO	N
9-10 AN	1						0	NO	NO	NO	NO	NO	NO	NO	N
10-11 AI	M						0	NO	NO	NO	NO	NO	NO	NO	N
11-12 NO	ON						0	NO	NO	NO	NO	NO	NO	NO	N
12-1 PM	1						0	NO	NO	NO	NO	NO	NO	NO	N
1-2 PM							0	NO	NO	NO	NO	NO	NO	NO	N
2-3 PM		1081.632	639	1721	54		54	YES	NO	YES	NO	YES	YES	YES	Y
3-4 PM							0	NO	NO	NO	NO	NO	NO	NO	N
4-5 PM							0	NO	NO	NO	NO	NO	NO	NO	N
5-6 PM		1824	1078	2902	91		91	YES	NO	YES	YES	YES	YES	YES	Y
6-7 PM							0	NO	NO	NO	NO	NO	NO	NO	N
7-8 PM							0	NO	NO	NO	NO	NO	NO	NO	N
ased on hourly	variation	at Seldom S	een/Liberty		Hours Me	t		2	0	2	1	2	2	2	
59.3%					Hours Wa	rrant Met			0		1		2		2

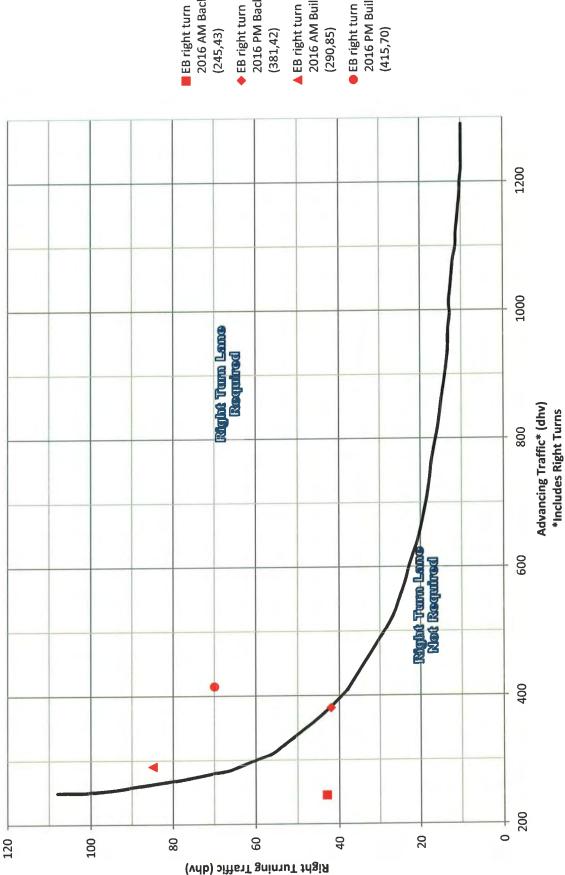
Warrant Satisfied ?

NO


NO

NO

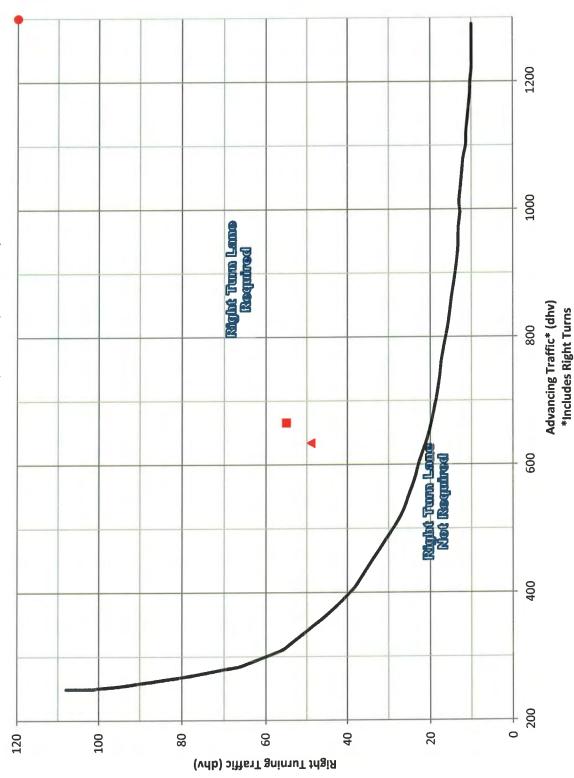
APPENDIX D:


Turn Lane Warrants / Length Calculations

Seldom Seen Road @ Bunker Lane 2-Lane Highway Left Turn Lane Warrant >40 mph or 70 kph Posted Speed Fig. 401-5bE ODOT Location and Design Manual, Volume One October 2004

20142045 TurnLaneWarrants.xls

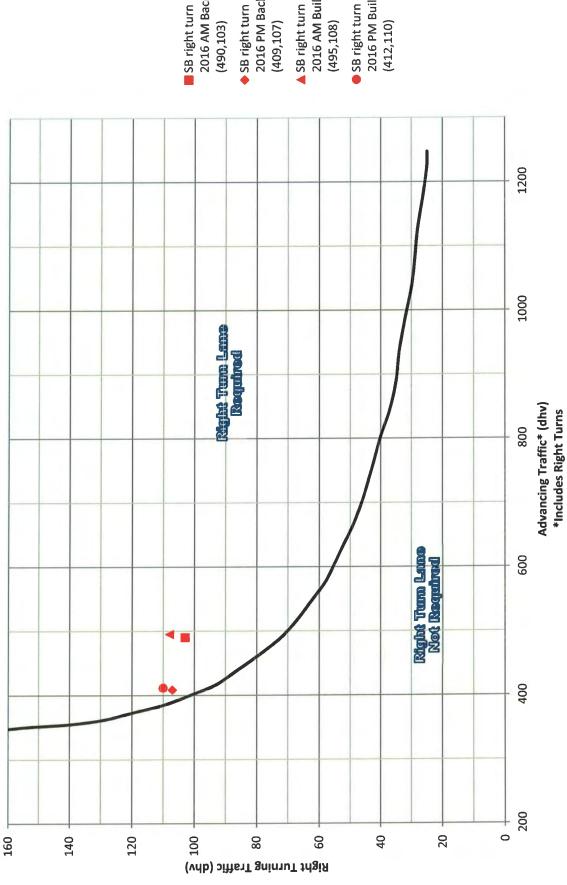
2-Lane Highway Right Turn Lane Warrant >40 mph or 70 kph Posted Speed Seldom Seen Road @ Bunker Lane


2016 AM Background 2016 PM Background 2016 AM Build (290,85) EB right turn EB right turn (245,43) (381,42)

2016 PM Build

(415,70)

Fig. 401-6bE ODOT Location and Design Manual, Volume One October 2004


Sawmill Parkway @ Sawmill Drive 2-Lane Highway Right Turn Lane Warrant >40 mph or 70 kph Posted Speed

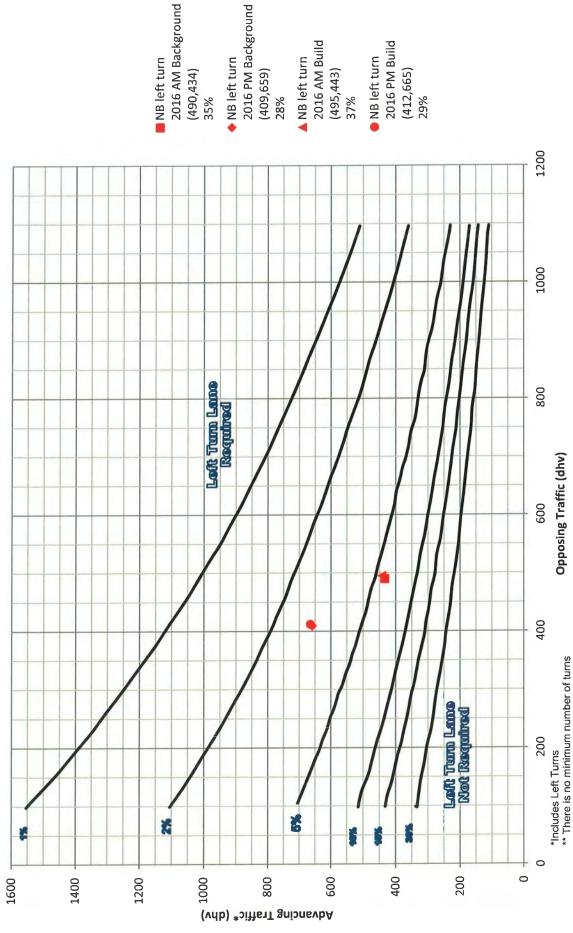
NB right turn
 2016 AM, Background
 (666,55)
 NB right turn
 2016 PM, Background
 (1730,125)
 NB right turn
 2016 AM, Build
 (634,49)

NB right turn
 2016 PM, Build
 (1611,114)

2-Lane Highway Right Turn Lane Warrant Seldom Seen Road @ Liberty Road =<40 mph or 70 kph Posted Speed

2016 PM Background 2016 AM Build SB right turn SB right turn (409,107) (495,108)

2016 AM Background


(490,103)

2016 PM Build (412,110) SB right turn

Fig. 401-5aE ODOT Location and Design Manual, Volume One October 2004

20142045 TurnLaneWarrants xls

AM Peak Hou	ır	
2036 w/o Site traffic		
Sawmill Parkway & Po	well Road	L t
Movement	EBLT	
Design Speed	45	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	318	vph
Number of Through Lanes	2	
Turning Volume	164	vph
Number of Turning Lanes	2	
Design Condition	С	A, B, or C
Turning Percentage	34%	
Vehicles Per Cycle	2.3	
Storage Length	100	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	225	feet
No Block Distance	175	feet
No Block Turn Lane Length	225	feet

AM Peak Hour								
2036 with Site traffic								
Sawmill Parkway & Po	well Road	d						
Movement	EBLT							
Design Speed	45	mph						
Cycle Length	100	seconds						
Control (Stop or Signal)	Signal							
Through Volume	318	vph						
Number of Through Lanes	2							
Turning Volume	172	vph						
Number of Turning Lanes	2	• I.						
Design Condition	С	A, B, or C						
Turning Percentage	35%							
Vehicles Per Cycle	2.4							
Storage Length	100	feet						
Deceleration/Taper	125	feet						
Calculated Turn Lane Length	225	feet						
No Block Distance	175	feet						
No Block Turn Lane Length	225	feet						

PM Peak Hour										
2036 w/o Site traffic		-								
Sawmill Parkway & Po	Sawmill Parkway & Powell Road									
Movement	EBLT									
Design Speed	45	mph								
Cycle Length	120	seconds								
Control (Stop or Signal)	Signal									
Through Volume	473	vph								
Number of Through Lanes	2									
Turning Volume	532	vph								
Number of Turning Lanes	2									
Design Condition	С	A, B, or C								
Turning Percentage	53%									
Vehicles Per Cycle	8.9									
Storage Length	350	feet								
Deceleration/Taper	125	feet								
Calculated Turn Lane Length	475	feet								
No Block Distance	325	feet								
No Block Turn Lane Length	475	feet								

PM Peak Hour								
2036 with Site traffic								
Sawmill Parkway & Po	owell Road	ł						
Movement	EBLT							
Design Speed	45	mph						
Cycle Length	120	seconds						
Control (Stop or Signal)	Signal							
Through Volume	473	vph						
Number of Through Lanes	2							
Turning Volume	540	vph						
Number of Turning Lanes	2							
Design Condition	С	A, B, or C						
Turning Percentage	53%							
Vehicles Per Cycle	9.0							
Storage Length	350	feet						
Deceleration/Taper	125	feet						
Calculated Turn Lane Length	475	feet						
No Block Distance	325	feet						
No Block Turn Lane Length	475	feet						

AM Peak Hou	ır	
2016 w/o Site traffic		
Sawmill Parkway & Po	owell Road	k
Movement	SBRT	
Design Speed	45	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	954	vph
Number of Through Lanes	2	
Turning Volume	127	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	12%	
Vehicles Per Cycle	3.5	
Storage Length	175	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	300	feet
No Block Distance	475	feet
No Block Turn Lane Length	475	feet

AM Peak Hour			
2016 with Site traffic			
Sawmill Parkway & Po	Sawmill Parkway & Powell Road		
Movement	SBRT		
Design Speed	45	mph	
Cycle Length	100	seconds	
Control (Stop or Signal)	Signal		
Through Volume	987	vph	
Number of Through Lanes	2		
Turning Volume	131	vph	
Number of Turning Lanes	1	10 March 1	
Design Condition	С	A, B, or C	
Turning Percentage	12%		
Vehicles Per Cycle	3.6		
Storage Length	175	feet	
Deceleration/Taper	125	feet	
Calculated Turn Lane Length	300	feet	
No Block Distance	500	feet	
No Block Turn Lane Length	500	feet	

PM Peak Ho	ur	
2016 w/o Site traffic		
Sawmill Parkway & Po	owell Roa	d
Movement	SBRT	
Design Speed	45	mph
Cycle Length	120	seconds
Control (Stop or Signal)	Signal	
Through Volume	771	vph
Number of Through Lanes	2	
Turning Volume	102	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	12%	
Vehicles Per Cycle	3.4	
Storage Length	150	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	275	feet
No Block Distance	475	feet
No Block Turn Lane Length	475	feet

PM Peak Hour		
2016 with Site traffic		
Sawmill Parkway & Po	owell Roa	d
Movement	SBRT	
Design Speed	45	mph
Cycle Length	120	seconds
Control (Stop or Signal)	Signal	
Through Volume	847	vph
Number of Through Lanes	2	
Turning Volume	111	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	12%	
Vehicles Per Cycle	3.7	
Storage Length	175	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	300	feet
No Block Distance	500	feet
No Block Turn Lane Length	500	feet

AM Peak Hou	r		
2036 w/o Site traffic		-	
Sawmill Parkway & Po	Sawmill Parkway & Powell Road		
Movement	SBRT		
Design Speed	45	mph	
Cycle Length	100	seconds	
Control (Stop or Signal)	Signal		
Through Volume	1701	vph	
Number of Through Lanes	2		
Turning Volume	228	vph	
Number of Turning Lanes	1		
Design Condition	С	A, B, or C	
Turning Percentage	12%		
Vehicles Per Cycle	6.3		
Storage Length	250	feet	
Deceleration/Taper	125	feet	
Calculated Turn Lane Length	375	feet	
No Block Distance	800	feet	
No Block Turn Lane Length	800	feet	

AM Peak Hour		
2036 with Site traffic		
Sawmill Parkway & Po	well Road	
Movement	SBRT	
Design Speed	45	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	1734	vph
Number of Through Lanes	2	
Turning Volume	232	vph
Number of Turning Lanes	1	1.1.1
Design Condition	С	A, B, or C
Turning Percentage	12%	
Vehicles Per Cycle	6.4	
Storage Length	250	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	375	feet
No Block Distance	800	feet
No Block Turn Lane Length	800	feet

PM Peak Hour		
2036 w/o Site traffic		
Sawmill Parkway & P	owell Road	
Movement	SBRT	
Design Speed	45	mph
Cycle Length	120	seconds
Control (Stop or Signal)	Signal	
Through Volume	1404	vph
Number of Through Lanes	2	
Turning Volume	185	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	12%	
Vehicles Per Cycle	6.2	
Storage Length	250	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	375	feet
No Block Distance	775	feet
No Block Turn Lane Length	775	feet

PM Peak Hour		
2036 with Site traffic		
Sawmill Parkway & Po	well Road	
Movement	SBRT	
Design Speed	45	mph
Cycle Length	120	seconds
Control (Stop or Signal)	Signal	
Through Volume	1480	vph
Number of Through Lanes	2	
Turning Volume	194	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	12%	
Vehicles Per Cycle	6.5	
Storage Length	275	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	400	feet
No Block Distance	825	feet
No Block Turn Lane Length	825	feet

AM Peak Hou	ır	
2016 w/o Site traffic		
Sawmill Parkway & Po	well Road	ł
Movement	SBLT	
Design Speed	45	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	954	vph
Number of Through Lanes	2	
Turning Volume	199	vph
Number of Turning Lanes	2	
Design Condition	С	A, B, or C
Turning Percentage	17%	
Vehicles Per Cycle	2.8	
Storage Length	150	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	275	feet
No Block Distance	475	feet
No Block Turn Lane Length	475	feet

AM Peak Hour		
2016 with Site traffic		
Sawmill Parkway & Po	well Road	b
Movement	SBLT	
Design Speed	45	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	987	vph
Number of Through Lanes	2	
Turning Volume	202	vph
Number of Turning Lanes	2	
Design Condition	С	A, B, or C
Turning Percentage	17%	
Vehicles Per Cycle	2.8	
Storage Length	150	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	275	feet
No Block Distance	500	feet
No Block Turn Lane Length	500	feet

PM Peak Hour		
2016 w/o Site traffic		
Sawmill Parkway & Po	owell Road	d
Movement	SBLT	
Design Speed	45	mph
Cycle Length	120	seconds
Control (Stop or Signal)	Signal	
Through Volume	771	vph
Number of Through Lanes	2	
Turning Volume	284	vph
Number of Turning Lanes	2	
Design Condition	С	A, B, or C
Turning Percentage	27%	
Vehicles Per Cycle	4.7	
Storage Length	200	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	325	feet
No Block Distance	475	feet
No Block Turn Lane Length	475	feet

PM Peak Hour		
2016 with Site traffic		
Sawmill Parkway & Po	well Road	ł
Movement	SBLT	
Design Speed	45	mph
Cycle Length	120	seconds
Control (Stop or Signal)	Signal	
Through Volume	847	vph
Number of Through Lanes	2	
Turning Volume	290	vph
Number of Turning Lanes	2	100 A
Design Condition	С	A, B, or C
Turning Percentage	26%	
Vehicles Per Cycle	4.8	
Storage Length	200	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	325	feet
No Block Distance	500	feet
No Block Turn Lane Length	500	feet

AM Peak Hou	ır	
2036 w/o Site traffic		
Sawmill Parkway & Po	well Road	d
Movement	SBLT	1
Design Speed	45	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	1701	vph
Number of Through Lanes	2	
Turning Volume	358	vph
Number of Turning Lanes	2	
Design Condition	С	A, B, or C
Turning Percentage	17%	
Vehicles Per Cycle	5.0	
Storage Length	200	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	325	feet
No Block Distance	800	feet
No Block Turn Lane Length	800	feet

AM Peak Hour		
2036 with Site traffic		
Sawmill Parkway & Po	well Road	d
Movement	SBLT	
Design Speed	45	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	1734	vph
Number of Through Lanes	2	
Turning Volume	361	vph
Number of Turning Lanes	2	
Design Condition	С	A, B, or C
Turning Percentage	17%	
Vehicles Per Cycle	5.0	
Storage Length	200	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	325	feet
No Block Distance	800	feet
No Block Turn Lane Length	800	feet

PM Peak Ho	ur	
2036 w/o Site traffic		
Sawmill Parkway & P	owell Roa	d
Movement	SBLT	
Design Speed	45	mph
Cycle Length	120	seconds
Control (Stop or Signal)	Signal	
Through Volume	1404	vph
Number of Through Lanes	2	
Turning Volume	514	vph
Number of Turning Lanes	2	
Design Condition	С	A, B, or C
Turning Percentage	27%	
Vehicles Per Cycle	8.6	
Storage Length	350	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	475	feet
No Block Distance	775	feet
No Block Turn Lane Length	775	feet

PM Peak Ho	ur	
2036 with Site traffic		
Sawmill Parkway & Pe	owell Roa	d
Movement	SBLT	
Design Speed	45	mph
Cycle Length	120	seconds
Control (Stop or Signal)	Signal	
Through Volume	1480	vph
Number of Through Lanes	2	
Turning Volume	520	vph
Number of Turning Lanes	2	
Design Condition	С	A, B, or C
Turning Percentage	26%	
Vehicles Per Cycle	8.7	
Storage Length	350	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	475	feet
No Block Distance	825	feet
No Block Turn Lane Length	825	feet

AM Peak Ho	ur	
2036 with Site traffic		
Sawmill Parkway	& Drive 1	
Movement	NBRT	
Design Speed	45	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	1178	vph
Number of Through Lanes	2	
Turning Volume	74	vph
Number of Turning Lanes	1	
Design Condition	В	A, B, or C
Turning Percentage	6%	
Vehicles Per Cycle	2.1	
Storage Length	100	feet
Deceleration/Taper	175	feet
Calculated Turn Lane Length	175	feet
No Block Distance	550	feet
No Block Turn Lane Length	550	feet

PM Peak Hour		
2036 with Site traffic		
Sawmill Parkway	& Drive 1	
Movement	NBRT	
Design Speed	45	mph
Cycle Length	120	seconds
Control (Stop or Signal)	Signal	
Through Volume	3096	vph
Number of Through Lanes	2	
Turning Volume	55	vph
Number of Turning Lanes	1	
Design Condition	В	A, B, or C
Turning Percentage	2%	
Vehicles Per Cycle	1.8	
Storage Length	100	feet
Deceleration/Taper	175	feet
Calculated Turn Lane Length	175	feet
No Block Distance	1550	feet
No Block Turn Lane Length	1550	feet

AM Peak Hou	ur	
2016 with Site traffic		
Sawmill Parkway &	Drive 1	
Movement	SBLT	
Design Speed	45	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	1182	vph
Number of Through Lanes	2	
Turning Volume	42	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	3%	
Vehicles Per Cycle	1.2	
Storage Length	50	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	175	feet
No Block Distance	550	feet
No Block Turn Lane Length	550	feet

AM Peak Hour		
2036 with Site traffic		
Sawmill Parkway &	Drive 1	
Movement	SBLT	
Design Speed	45	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	2117	vph
Number of Through Lanes	2	
Turning Volume	56	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	3%	
Vehicles Per Cycle	1.6	
Storage Length	100	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	225	feet
No Block Distance	975	feet
No Block Turn Lane Length	975	feet

PM Peak Ho	ur	
2016 with Site traffic		
Sawmill Parkway &	& Drive 1	
Movement	SBLT	
Design Speed	45	mph
Cycle Length	120	seconds
Control (Stop or Signal)	Signal	
Through Volume	1042	vph
Number of Through Lanes	2	
Turning Volume	36	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	3%	
Vehicles Per Cycle	1.2	
Storage Length	50	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	175	feet
No Block Distance	600	feet
No Block Turn Lane Length	600	feet

PM Peak Hour		
2036 with Site traffic		
Sawmill Parkway &	& Drive 1	
Movement	SBLT	
Design Speed	45	mph
Cycle Length	120	seconds
Control (Stop or Signal)	Signal	
Through Volume	1860	vph
Number of Through Lanes	2	
Turning Volume	40	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	2%	
Vehicles Per Cycle	1.3	
Storage Length	50	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	175	feet
No Block Distance	975	feet
No Block Turn Lane Length	975	feet

AM Peak Hour		
2016 with Site traffic		
Sawmill Parkway &	Drive 1	
Movement	NBLT	
Design Speed	45	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	652	vph
Number of Through Lanes	2	
Turning Volume	16	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	2%	
Vehicles Per Cycle	0.4	
Storage Length	50	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	175	feet
No Block Distance	350	feet
No Block Turn Lane Length	350	feet

AM Peak Hour		
2036 with Site traffic		
Sawmill Parkway &	Drive 1	
Movement	NBLT	
Design Speed	45	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	1165	vph
Number of Through Lanes	2	-
Turning Volume	16	vph
Number of Turning Lanes	1	A
Design Condition	С	A, B, or C
Turning Percentage	1%	
Vehicles Per Cycle	0.4	
Storage Length	50	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	175	feet
No Block Distance	550	feet
No Block Turn Lane Length	550	feet

PM Peak Ho	ur	
2016 with Site traffic		
Sawmill Parkway 8	Drive 1	
Movement	NBLT	
Design Speed	45	mph
Cycle Length	120	seconds
Control (Stop or Signal)	Signal	
Through Volume	1716	vph
Number of Through Lanes	2	
Turning Volume	35	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	2%	
Vehicles Per Cycle	1.2	
Storage Length	50	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	175	feet
No Block Distance	975	feet
No Block Turn Lane Length	975	feet

PM Peak Hou	ur	
2036 with Site traffic		
Sawmill Parkway &	Drive 1	
Movement	NBLT	
Design Speed	45	mph
Cycle Length	120	seconds
Control (Stop or Signal)	Signal	
Through Volume	3095	vph
Number of Through Lanes	2	
Turning Volume	35	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	1%	
Vehicles Per Cycle	1.2	
Storage Length	50	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	175	feet
No Block Distance	1550	feet
No Block Turn Lane Length	1550	feet

AM Peak Hou	ur	
2036 with Site traffic		
Sawmill Parkway & Sa	wmill Driv	/e
Movement	NBRT	
Design Speed	45	mph
Cycle Length	60	seconds
Control (Stop or Signal)	Stop	
Through Volume	1126	vph
Number of Through Lanes	2	
Turning Volume	54	vph
Number of Turning Lanes	1	
Design Condition	В	A, B, or C
Turning Percentage	5%	
Vehicles Per Cycle	0.9	
Storage Length	50	feet
Deceleration/Taper	175	feet
Calculated Turn Lane Length	175	feet
No Block Distance	N.A.	feet
No Block Turn Lane Length	N.A.	feet

PM Peak Hou	ur	
2036 with Site traffic		
Sawmill Parkway & Sa	wmill Driv	/e
Movement	NBRT	
Design Speed	45	mph
Cycle Length	60	seconds
Control (Stop or Signal)	Stop	
Through Volume	2899	vph
Number of Through Lanes	2	
Turning Volume	117	vph
Number of Turning Lanes	1	
Design Condition	В	A, B, or C
Turning Percentage	4%	
Vehicles Per Cycle	2.0	
Storage Length	100	feet
Deceleration/Taper	175	feet
Calculated Turn Lane Length	175	feet
No Block Distance	N.A.	feet
No Block Turn Lane Length	N.A.	feet

AM Peak Hou	Ir	
2016 w/o Site traffic		
Sawmill Parkway & Seldo	m Seen R	load
Movement	NBLT	
Design Speed	45	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	513	vph
Number of Through Lanes	2	
Turning Volume	29	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	5%	
Vehicles Per Cycle	0.8	
Storage Length	50	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	175	feet
No Block Distance	275	feet
No Block Turn Lane Length	275	feet

AM Peak Hou	r	
2016 with Site traffic		
Sawmill Parkway & Seldor	m Seen R	load
Movement	NBLT	
Design Speed	45	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	522	vph
Number of Through Lanes	2	
Turning Volume	30	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	5%	
Vehicles Per Cycle	0.8	
Storage Length	50	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	175	feet
No Block Distance	275	feet
No Block Turn Lane Length	275	feet

PM Peak Hou	r	
2016 w/o Site traffic		
Sawmill Parkway & Seldo	m Seen R	load
Movement	NBLT	
Design Speed	45	mph
Cycle Length	120	seconds
Control (Stop or Signal)	Signal	
Through Volume	1269	vph
Number of Through Lanes	2	
Turning Volume	89	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	7%	
Vehicles Per Cycle	3.0	
Storage Length	150	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	275	feet
No Block Distance	725	feet
No Block Turn Lane Length	725	feet

PM Peak Hour		
2016 with Site traffic		
Sawmill Parkway & Seldon	n Seen R	load
Movement	NBLT	
Design Speed	45	mph
Cycle Length	120	seconds
Control (Stop or Signal)	Signal	
Through Volume	1289	vph
Number of Through Lanes	2	
Turning Volume	92	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	7%	
Vehicles Per Cycle	3.1	
Storage Length	150	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	275	feet
No Block Distance	725	feet
No Block Turn Lane Length	725	feet

AM Peak Hou	ır	11
2036 w/o Site traffic		
Sawmill Parkway & Seldo	m Seen R	load
Movement	NBLT	
Design Speed	45	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	920	vph
Number of Through Lanes	2	
Turning Volume	51	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	5%	
Vehicles Per Cycle	1.4	
Storage Length	50	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	175	feet
No Block Distance	475	feet
No Block Turn Lane Length	475	feet

AM Peak Hou	r	
2036 with Site traffic		
Sawmill Parkway & Seldo	m Seen R	load
Movement	NBLT	
Design Speed	45	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	929	vph
Number of Through Lanes	2	
Turning Volume	52	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	5%	
Vehicles Per Cycle	1.4	
Storage Length	50	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	175	feet
No Block Distance	475	feet
No Block Turn Lane Length	475	feet

PM Peak Ho	ur	
2036 w/o Site traffic		
Sawmill Parkway & Selde	om Seen F	Road
Movement	NBLT	
Design Speed	45	mph
Cycle Length	120	seconds
Control (Stop or Signal)	Signal	
Through Volume	2302	vph
Number of Through Lanes	2	
Turning Volume	160	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	6%	
Vehicles Per Cycle	5.3	
Storage Length	200	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	325	feet
No Block Distance	1250	feet
No Block Turn Lane Length	1250	feet

PM Peak Hou	ur	
2036 with Site traffic		
Sawmill Parkway & Seldo	om Seen F	Road
Movement	NBLT	
Design Speed	45	mph
Cycle Length	120	seconds
Control (Stop or Signal)	Signal	
Through Volume	2322	vph
Number of Through Lanes	2	
Turning Volume	163	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	7%	
Vehicles Per Cycle	5.4	
Storage Length	200	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	325	feet
No Block Distance	1250	feet
No Block Turn Lane Length	1250	feet

AM Peak Hou	ır	
2016 w/o Site traffic		
Sawmill Parkway & Seldo	m Seen R	load
Movement	SBLT	
Design Speed	45	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	938	vph
Number of Through Lanes	2	
Turning Volume	62	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	6%	
Vehicles Per Cycle	1.7	
Storage Length	100	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	225	feet
No Block Distance	475	feet
No Block Turn Lane Length	475	feet

AM Peak Hour		
2016 with Site traffic		
Sawmill Parkway & Seldor	n Seen R	load
Movement	SBLT	
Design Speed	45	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	954	vph
Number of Through Lanes	2	
Turning Volume	77	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	7%	
Vehicles Per Cycle	2.1	
Storage Length	100	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	225	feet
No Block Distance	475	feet
No Block Turn Lane Length	475	feet

PM Peak Hour		
2016 w/o Site traffic		
Sawmill Parkway & Seldom Seen Road		
Movement	SBLT	
Design Speed	45	mph
Cycle Length	120	seconds
Control (Stop or Signal)	Signal	
Through Volume	708	vph
Number of Through Lanes	2	
Turning Volume	104	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	13%	
Vehicles Per Cycle	3.5	
Storage Length	175	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	300	feet
No Block Distance	450	feet
No Block Turn Lane Length	450	feet

PM Peak Hour		
2016 with Site traffic		
Sawmill Parkway & Seldor	m Seen R	load
Movement	SBLT	
Design Speed	45	mph
Cycle Length	120	seconds
Control (Stop or Signal)	Signal	
Through Volume	719	vph
Number of Through Lanes	2	
Turning Volume	114	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	14%	
Vehicles Per Cycle	3.8	
Storage Length	175	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	300	feet
No Block Distance	450	feet
No Block Turn Lane Length	450	feet

AM Peak Hou	Ir	
2036 w/o Site traffic		
Sawmill Parkway & Seldo	m Seen R	load
Movement	SBLT	1.00
Design Speed	45	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	1688	vph
Number of Through Lanes	2	0.18
Turning Volume	112	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	6%	1.1.1
Vehicles Per Cycle	3.1	
Storage Length	150	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	275	feet
No Block Distance	775	feet
No Block Turn Lane Length	775	feet

AM Peak Hour		
2036 with Site traffic		
Sawmill Parkway & Seldo	m Seen R	load
Movement	SBLT	
Design Speed	45	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	1704	vph
Number of Through Lanes	2	
Turning Volume	127	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	7%	
Vehicles Per Cycle	3.5	
Storage Length	175	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	300	feet
No Block Distance	800	feet
No Block Turn Lane Length	800	feet

PM Peak Hour		
2036 w/o Site traffic		
Sawmill Parkway & Seld	om Seen F	Road
Movement	SBLT	
Design Speed	45	mph
Cycle Length	120	seconds
Control (Stop or Signal)	Signal	
Through Volume	1270	vph
Number of Through Lanes	2	
Turning Volume	187	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	13%	
Vehicles Per Cycle	6.2	
Storage Length	250	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	375	feet
No Block Distance	725	feet
No Block Turn Lane Length	725	feet

PM Peak Hour		
2036 with Site traffic		
Sawmill Parkway & Seldo	om Seen F	Road
Movement	SBLT	
Design Speed	45	mph
Cycle Length	120	seconds
Control (Stop or Signal)	Signal	
Through Volume	1281	vph
Number of Through Lanes	2	
Turning Volume	197	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	13%	
Vehicles Per Cycle	6.6	
Storage Length	275	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	400	feet
No Block Distance	725	feet
No Block Turn Lane Length	725	feet

AM Peak Hou	ur	
2016 w/o Site traffic		
Sawmill Parkway & Seldo	om Seen R	load
Movement	WBLT	
Design Speed	45	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	28	vph
Number of Through Lanes	1	
Turning Volume	159	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	85%	
Vehicles Per Cycle	4.4	
Storage Length	175	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	300	feet
No Block Distance	0	feet
No Block Turn Lane Length	300	feet

AM Peak Hour		
2016 with Site traffic	19.34	
Sawmill Parkway & Seldo	om Seen R	load
Movement	WBLT	
Design Speed	45	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	29	vph
Number of Through Lanes	1	
Turning Volume	177	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	86%	
Vehicles Per Cycle	4.9	
Storage Length	200	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	325	feet
No Block Distance	0	feet
No Block Turn Lane Length	325	feet

PM Peak Hou	ur	
2016 w/o Site traffic		
Sawmill Parkway & Seldo	om Seen R	load
Movement	WBLT	
Design Speed	45	mph
Cycle Length	120	seconds
Control (Stop or Signal)	Signal	
Through Volume	79	vph
Number of Through Lanes	1	
Turning Volume	245	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	76%	
Vehicles Per Cycle	8.2	
Storage Length	325	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	450	feet
No Block Distance	150	feet
No Block Turn Lane Length	450	feet

PM Peak Hour		
2016 with Site traffic		
Sawmill Parkway & Seldo	om Seen R	load
Movement	WBLT	
Design Speed	45	mph
Cycle Length	120	seconds
Control (Stop or Signal)	Signal	
Through Volume	82	vph
Number of Through Lanes	1	
Turning Volume	266	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	76%	
Vehicles Per Cycle	8.9	
Storage Length	350	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	475	feet
No Block Distance	150	feet
No Block Turn Lane Length	475	feet

AM Peak Ho	ur	
2036 w/o Site traffic		
Sawmill Parkway & Seldo	om Seen R	load
Movement	WBLT	
Design Speed	45	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	45	vph
Number of Through Lanes	1	
Turning Volume	260	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	85%	
Vehicles Per Cycle	7.2	
Storage Length	275	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	400	feet
No Block Distance	50	feet
No Block Turn Lane Length	400	feet

AM Peak Hour		
2036 with Site traffic		
Sawmill Parkway & Seldo	m Seen R	load
Movement	WBLT	
Design Speed	45	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	46	vph
Number of Through Lanes	1	
Turning Volume	278	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	86%	
Vehicles Per Cycle	7.7	
Storage Length	325	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	450	feet
No Block Distance	50	feet
No Block Turn Lane Length	450	feet

PM Peak Hour			
2036 w/o Site traffic			
Sawmill Parkway & Selde	Sawmill Parkway & Seldom Seen Road		
Movement	WBLT		
Design Speed	45	mph	
Cycle Length	120	seconds	
Control (Stop or Signal)	Signal		
Through Volume	130	vph	
Number of Through Lanes	1		
Turning Volume	402	vph	
Number of Turning Lanes	1		
Design Condition	С	A, B, or C	
Turning Percentage	76%		
Vehicles Per Cycle	13.4		
Storage Length	475	feet	
Deceleration/Taper	125	feet	
Calculated Turn Lane Length	600	feet	
No Block Distance	175	feet	
No Block Turn Lane Length	600	feet	

PM Peak Hour		
2036 with Site traffic		
Sawmill Parkway & Seldo	om Seen F	Road
Movement	WBLT	
Design Speed	45	mph
Cycle Length	120	seconds
Control (Stop or Signal)	Signal	
Through Volume	133	vph
Number of Through Lanes	1	
Turning Volume	423	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	76%	
Vehicles Per Cycle	14.1	
Storage Length	500	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	625	feet
No Block Distance	175	feet
No Block Turn Lane Length	625	feet

AM Peak Hou	ır	
2016 w/o Site traffic	Sec. 2	
Sawmill Parkway & Seldo	m Seen R	load
Movement	EBLT	
Design Speed	45	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	61	vph
Number of Through Lanes	1	
Turning Volume	29	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	32%	
Vehicles Per Cycle	0.8	
Storage Length	50	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	175	feet
No Block Distance	100	feet
No Block Turn Lane Length	175	feet

AM Peak Hour		
2016 with Site traffic		
Sawmill Parkway & Seldor	m Seen R	load
Movement	EBLT	
Design Speed	45	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	64	vph
Number of Through Lanes	1	
Turning Volume	29	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	31%	
Vehicles Per Cycle	0.8	
Storage Length	50	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	175	feet
No Block Distance	100	feet
No Block Turn Lane Length	175	feet

PM Peak Hou	Jr	
2016 w/o Site traffic		
Sawmill Parkway & Seldo	om Seen R	load
Movement	EBLT	
Design Speed	45	mph
Cycle Length	120	seconds
Control (Stop or Signal)	Signal	
Through Volume	97	vph
Number of Through Lanes	1	
Turning Volume	52	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	35%	
Vehicles Per Cycle	1.7	
Storage Length	100	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	225	feet
No Block Distance	150	feet
No Block Turn Lane Length	225	feet

PM Peak Hou	ır	
2016 with Site traffic		
Sawmill Parkway & Seldo	m Seen R	load
Movement	EBLT	
Design Speed	45	mph
Cycle Length	120	seconds
Control (Stop or Signal)	Signal	
Through Volume	99	vph
Number of Through Lanes	1	
Turning Volume	52	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	34%	
Vehicles Per Cycle	1.7	
Storage Length	100	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	225	feet
No Block Distance	150	feet
No Block Turn Lane Length	225	feet

AM Peak Hou	r	
2036 w/o Site traffic		
Sawmill Parkway & Seldo	m Seen R	load
Movement	EBLT	
Design Speed	45	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	99	vph
Number of Through Lanes	1	
Turning Volume	47	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	32%	
Vehicles Per Cycle	1.3	
Storage Length	50	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	175	feet
No Block Distance	150	feet
No Block Turn Lane Length	175	feet

AM Peak Hou	r	
2036 with Site traffic		
Sawmill Parkway & Seldom Seen Road		
Movement	EBLT	
Design Speed	45	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	102	vph
Number of Through Lanes	1	
Turning Volume	47	vph
Number of Turning Lanes	1	1 N N 1
Design Condition	С	A, B, or C
Turning Percentage	32%	
Vehicles Per Cycle	1.3	
Storage Length	50	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	175	feet
No Block Distance	150	feet
No Block Turn Lane Length	175	feet

PM Peak Ho	ur	
2036 w/o Site traffic		
Sawmill Parkway & Seldom Seen Road		
Movement	EBLT	
Design Speed	45	mph
Cycle Length	120	seconds
Control (Stop or Signal)	Signal	
Through Volume	158	vph
Number of Through Lanes	1	
Turning Volume	85	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	35%	
Vehicles Per Cycle	2.8	
Storage Length	150	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	275	feet
No Block Distance	200	feet
No Block Turn Lane Length	275	feet

PM Peak Hour		
2036 with Site traffic		
Sawmill Parkway & Selde	om Seen F	Road
Movement	EBLT	
Design Speed	45	mph
Cycle Length	120	seconds
Control (Stop or Signal)	Signal	
Through Volume	161	vph
Number of Through Lanes	1	
Turning Volume	85	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	35%	
Vehicles Per Cycle	2.8	
Storage Length	150	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	275	feet
No Block Distance	200	feet
No Block Turn Lane Length	275	feet

AM Peak Hour				
2036 with Site traffic				
Seldom Seen Road & Bunker Lane				
Movement	EBRT			
Design Speed	45	mph		
Cycle Length	60	seconds		
Control (Stop or Signal)	Stop			
Through Volume	326	vph		
Number of Through Lanes	1			
Turning Volume	47	vph		
Number of Turning Lanes	1			
Design Condition	С	A, B, or C		
Turning Percentage	13%			
Vehicles Per Cycle	0.8			
Storage Length	50	feet		
Deceleration/Taper	125	feet		
Calculated Turn Lane Length	175	feet		
No Block Distance	N.A.	feet		
No Block Turn Lane Length	N.A.	feet		

AM Peak Hour				
2036 with Site traffic				
Seldom Seen Road & Bunker Lane				
Movement	NBLT			
Design Speed	25	mph		
Cycle Length	60	seconds		
Control (Stop or Signal)	Stop			
Through Volume	24	vph		
Number of Through Lanes	1			
Turning Volume	29	vph		
Number of Turning Lanes	1			
Design Condition	А	A, B, or C		
Turning Percentage	55%			
Vehicles Per Cycle	0.5			
Storage Length	50	feet		
Deceleration/Taper	50	feet		
Calculated Turn Lane Length	100	feet		
No Block Distance	N.A.	feet		
No Block Turn Lane Length	N.A.	feet		

PM Peak Ho	ur			
2036 with Site traffic				
Seldom Seen Road & Bunker Lane				
Movement	EBRT			
Design Speed	45	mph		
Cycle Length	60	seconds		
Control (Stop or Signal)	Stop			
Through Volume	542	vph		
Number of Through Lanes	1			
Turning Volume	45	vph		
Number of Turning Lanes	1			
Design Condition	В	A, B, or C		
Turning Percentage	8%			
Vehicles Per Cycle	0.8			
Storage Length	50	feet		
Deceleration/Taper	175	feet		
Calculated Turn Lane Length	175	feet		
No Block Distance	N.A.	feet		
No Block Turn Lane Length	N.A.	feet		

PM Peak Ho	ur	
2036 with Site traffic		
Seldom Seen Road &	Bunker La	ne
Movement	NBLT	
Design Speed	25	mph
Cycle Length	60	seconds
Control (Stop or Signal)	Stop	
Through Volume	48	vph
Number of Through Lanes	1	
Turning Volume	83	vph
Number of Turning Lanes	1	
Design Condition	A	A, B, or C
Turning Percentage	63%	
Vehicles Per Cycle	1.4	
Storage Length	50	feet
Deceleration/Taper	50	feet
Calculated Turn Lane Length	100	feet
No Block Distance	N.A.	feet
No Block Turn Lane Length	N.A.	feet

AM Peak Hou	ır	
2016 w/o Site traffic		
Seldom Seen Road & B	unker La	ne
Movement	WBLT	
Design Speed	45	mph
Cycle Length	60	seconds
Control (Stop or Signal)	Stop	
Through Volume	170	vph
Number of Through Lanes	1	
Turning Volume	13	vph
Number of Turning Lanes	1	
Design Condition	В	A, B, or C
Turning Percentage	7%	
Vehicles Per Cycle	0.2	
Storage Length	50	feet
Deceleration/Taper	175	feet
Calculated Turn Lane Length	175	feet
No Block Distance	N.A.	feet
No Block Turn Lane Length	N.A.	feet

AM Peak Hou	ır	
2016 with Site traffic		
Seldom Seen Road & B	unker La	ne
Movement	WBLT	
Design Speed	45	mph
Cycle Length	60	seconds
Control (Stop or Signal)	Stop	
Through Volume	163	vph
Number of Through Lanes	1	
Turning Volume	22	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	12%	
Vehicles Per Cycle	0.4	
Storage Length	50	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	175	feet
No Block Distance	N.A.	feet
No Block Turn Lane Length	N.A.	feet

PM Peak Hot	ur	
2016 w/o Site traffic		
Seldom Seen Road & E	Bunker La	ne
Movement	WBLT	
Design Speed	45	mph
Cycle Length	60	seconds
Control (Stop or Signal)	Stop	
Through Volume	369	vph
Number of Through Lanes	1	
Turning Volume	34	vph
Number of Turning Lanes	1	
Design Condition	В	A, B, or C
Turning Percentage	8%	
Vehicles Per Cycle	0.6	
Storage Length	50	feet
Deceleration/Taper	175	feet
Calculated Turn Lane Length	175	feet
No Block Distance	N.A.	feet
No Block Turn Lane Length	N.A.	feet

PM Peak Hou	ır	
2016 with Site traffic		
Seldom Seen Road & B	unker La	ne
Movement	WBLT	
Design Speed	45	mph
Cycle Length	60	seconds
Control (Stop or Signal)	Stop	
Through Volume	343	vph
Number of Through Lanes	1	
Turning Volume	40	vph
Number of Turning Lanes	1	
Design Condition	С	A, B, or C
Turning Percentage	10%	
Vehicles Per Cycle	0.7	
Storage Length	50	feet
Deceleration/Taper	125	feet
Calculated Turn Lane Length	175	feet
No Block Distance	N.A.	feet
No Block Turn Lane Length	N.A.	feet

AM Peak Hou	Jr	
2036 w/o Site traffic		
Seldom Seen Road & E	Bunker La	ne
Movement	WBLT	
Design Speed	45	mph
Cycle Length	60	seconds
Control (Stop or Signal)	Stop	
Through Volume	267	vph
Number of Through Lanes	1	
Turning Volume	15	vph
Number of Turning Lanes	1	
Design Condition	В	A, B, or C
Turning Percentage	5%	
Vehicles Per Cycle	0.3	
Storage Length	50	feet
Deceleration/Taper	175	feet
Calculated Turn Lane Length	175	feet
No Block Distance	N.A.	feet
No Block Turn Lane Length	N.A.	feet

AM Peak Hou	ur	
2036 with Site traffic		
Seldom Seen Road & E	Bunker La	ne
Movement	WBLT	
Design Speed	45	mph
Cycle Length	60	seconds
Control (Stop or Signal)	Stop	
Through Volume	264	vph
Number of Through Lanes	1	
Turning Volume	23	vph
Number of Turning Lanes	1	- A
Design Condition	В	A, B, or C
Turning Percentage	8%	
Vehicles Per Cycle	0.4	
Storage Length	50	feet
Deceleration/Taper	175	feet
Calculated Turn Lane Length	175	feet
No Block Distance	N.A.	feet
No Block Turn Lane Length	N.A.	feet

PM Peak Ho	ur	
2036 w/o Site traffic		
Seldom Seen Road & E	Bunker La	ne
Movement	WBLT	
Design Speed	45	mph
Cycle Length	60	seconds
Control (Stop or Signal)	Stop	
Through Volume	577	vph
Number of Through Lanes	1	
Turning Volume	42	vph
Number of Turning Lanes	1	
Design Condition	В	A, B, or C
Turning Percentage	7%	
Vehicles Per Cycle	0.7	
Storage Length	50	feet
Deceleration/Taper	175	feet
Calculated Turn Lane Length	175	feet
No Block Distance	N.A.	feet
No Block Turn Lane Length	N.A.	feet

PM Peak Ho	our	
2036 with Site traffic		
Seldom Seen Road &	Bunker La	ne
Movement	WBLT	
Design Speed	45	mph
Cycle Length	60	seconds
Control (Stop or Signal)	Stop	
Through Volume	559	vph
Number of Through Lanes	1	
Turning Volume	39	vph
Number of Turning Lanes	1	
Design Condition	В	A, B, or C
Turning Percentage	7%	
Vehicles Per Cycle	0.7	
Storage Length	50	feet
Deceleration/Taper	175	feet
Calculated Turn Lane Length	175	feet
No Block Distance	N.A.	feet
No Block Turn Lane Length	N.A.	feet

AM Peak Hour		
2016 w/o Site traffic		
Seldom Seen Road & Li	iberty Roa	ad
Movement	NBLT	
Design Speed	35	mph
Cycle Length	90	seconds
Control (Stop or Signal)	Signal	
Through Volume	280	vph
Number of Through Lanes	1	
Turning Volume	154	vph
Number of Turning Lanes	1	
Design Condition	А	A, B, or C
Turning Percentage	35%	
Vehicles Per Cycle	3.9	
Storage Length	175	feet
Deceleration/Taper	50	feet
Calculated Turn Lane Length	225	feet
No Block Distance	275	feet
No Block Turn Lane Length	275	feet

AM Peak Ho	ur	
2016 with Site traffic		
Seldom Seen Road & L	iberty Roa	ad
Movement	NBLT	
Design Speed	35	mph
Cycle Length	90	seconds
Control (Stop or Signal)	Signal	
Through Volume	280	vph
Number of Through Lanes	1	
Turning Volume	163	vph
Number of Turning Lanes	1	
Design Condition	А	A, B, or C
Turning Percentage	37%	
Vehicles Per Cycle	4.1	
Storage Length	175	feet
Deceleration/Taper	50	feet
Calculated Turn Lane Length	225	feet
No Block Distance	275	feet
No Block Turn Lane Length	275	feet

PM Peak Ho	our	
2016 w/o Site traffic	2	
Seldom Seen Road &	Liberty Roa	ad
Movement	NBLT	
Design Speed	35	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	472	vph
Number of Through Lanes	1	
Turning Volume	187	vph
Number of Turning Lanes	1	
Design Condition	А	A, B, or C
Turning Percentage	28%	
Vehicles Per Cycle	5.2	
Storage Length	200	feet
Deceleration/Taper	50	feet
Calculated Turn Lane Length	250	feet
No Block Distance	475	feet
No Block Turn Lane Length	475	feet

PM Peak Ho	ur	
2016 with Site traffic		
Seldom Seen Road & L	iberty Roa	ad
Movement	NBLT	
Design Speed	35	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	472	vph
Number of Through Lanes	1	
Turning Volume	193	vph
Number of Turning Lanes	1	
Design Condition	A	A, B, or C
Turning Percentage	29%	
Vehicles Per Cycle	5.4	
Storage Length	200	feet
Deceleration/Taper	50	feet
Calculated Turn Lane Length	250	feet
No Block Distance	475	feet
No Block Turn Lane Length	475	feet

AM Peak Hou	ır		
2016 w/o Site traffic			
Seldom Seen Road & L	Seldom Seen Road & Liberty Road		
Movement	SBRT		
Design Speed	35	mph	
Cycle Length	90	seconds	
Control (Stop or Signal)	Signal		
Through Volume	387	vph	
Number of Through Lanes	1		
Turning Volume	103	vph	
Number of Turning Lanes	1		
Design Condition	А	A, B, or C	
Turning Percentage	21%		
Vehicles Per Cycle	2.6		
Storage Length	150	feet	
Deceleration/Taper	50	feet	
Calculated Turn Lane Length	200	feet	
No Block Distance	375	feet	
No Block Turn Lane Length	375	feet	

AM Peak Hour			
2016 with Site traffic			
Seldom Seen Road &	Seldom Seen Road & Liberty Road		
Movement	SBRT		
Design Speed	35	mph	
Cycle Length	90	seconds	
Control (Stop or Signal)	Signal		
Through Volume	387	vph	
Number of Through Lanes	1	1	
Turning Volume	108	vph	
Number of Turning Lanes	1		
Design Condition	А	A, B, or C	
Turning Percentage	22%		
Vehicles Per Cycle	2.7	- N	
Storage Length	150	feet	
Deceleration/Taper	50	feet	
Calculated Turn Lane Length	200	feet	
No Block Distance	375	feet	
No Block Turn Lane Length	375	feet	

PM Peak Ho	ur	
2016 w/o Site traffic	10 0 mil	
Seldom Seen Road & L	iberty Ro	ad
Movement	SBRT	2
Design Speed	35	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	302	vph
Number of Through Lanes	1	
Turning Volume	107	vph
Number of Turning Lanes	1	
Design Condition	А	A, B, or C
Turning Percentage	26%	
Vehicles Per Cycle	3.0	
Storage Length	150	feet
Deceleration/Taper	50	feet
Calculated Turn Lane Length	200	feet
No Block Distance	325	feet
No Block Turn Lane Length	325	feet

PM Peak Hour		
2016 with Site traffic		
Seldom Seen Road & L	iberty Ro	ad
Movement	SBRT	
Design Speed	35	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	302	vph
Number of Through Lanes	1	
Turning Volume	112	vph
Number of Turning Lanes	1	
Design Condition	A	A, B, or C
Turning Percentage	27%	
Vehicles Per Cycle	3.1	
Storage Length	150	feet
Deceleration/Taper	50	feet
Calculated Turn Lane Length	200	feet
No Block Distance	325	feet
No Block Turn Lane Length	325	feet

AM Peak Hou	ır	
2036 w/o Site traffic	1.1.1	
Seldom Seen Road & L	iberty Roa	ad
Movement	NBLT	
Design Speed	35	mph
Cycle Length	90	seconds
Control (Stop or Signal)	Signal	
Through Volume	506	vph
Number of Through Lanes	1	
Turning Volume	274	vph
Number of Turning Lanes	1	10.0
Design Condition	A	A, B, or C
Turning Percentage	35%	
Vehicles Per Cycle	6.9	
Storage Length	275	feet
Deceleration/Taper	50	feet
Calculated Turn Lane Length	325	feet
No Block Distance	475	feet
No Block Turn Lane Length	475	feet

AM Peak Hour		
2036 with Site traffic		
Seldom Seen Road & Liberty Road		
Movement	NBLT	
Design Speed	35	mph
Cycle Length	90	seconds
Control (Stop or Signal)	Signal	
Through Volume	506	vph
Number of Through Lanes	1	
Turning Volume	283	vph
Number of Turning Lanes	1	
Design Condition	A	A, B, or C
Turning Percentage	36%	
Vehicles Per Cycle	7.1	
Storage Length	275	feet
Deceleration/Taper	50	feet
Calculated Turn Lane Length	325	feet
No Block Distance	475	feet
No Block Turn Lane Length	475	feet

PM Peak Hour		
2036 w/o Site traffic		
Seldom Seen Road & L	iberty Roa	ad
Movement	NBLT	
Design Speed	35	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	852	vph
Number of Through Lanes	1	
Turning Volume	336	vph
Number of Turning Lanes	1	
Design Condition	Α	A, B, or C
Turning Percentage	28%	
Vehicles Per Cycle	9.3	
Storage Length	350	feet
Deceleration/Taper	50	feet
Calculated Turn Lane Length	400	feet
No Block Distance	800	feet
No Block Turn Lane Length	800	feet

PM Peak Hour		
2036 with Site traffic		
Seldom Seen Road & L	iberty Roa	ad
Movement	NBLT	
Design Speed	35	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	852	vph
Number of Through Lanes	1	
Turning Volume	342	vph
Number of Turning Lanes	1	
Design Condition	A	A, B, or C
Turning Percentage	29%	
Vehicles Per Cycle	9.5	
Storage Length	375	feet
Deceleration/Taper	50	feet
Calculated Turn Lane Length	425	feet
No Block Distance	800	feet
No Block Turn Lane Length	800	feet

AM Peak Ho	ur	
2036 w/o Site traffic	6	
Seldom Seen Road & I	Liberty Roa	ad
Movement	SBRT	
Design Speed	35	mph
Cycle Length	90	seconds
Control (Stop or Signal)	Signal	
Through Volume	699	vph
Number of Through Lanes	1	
Turning Volume	185	vph
Number of Turning Lanes	1	
Design Condition	А	A, B, or C
Turning Percentage	21%	
Vehicles Per Cycle	4.6	
Storage Length	200	feet
Deceleration/Taper	50	feet
Calculated Turn Lane Length	250	feet
No Block Distance	600	feet
No Block Turn Lane Length	600	feet

AM Peak Hour		
2036 with Site traffic		
Seldom Seen Road & Liberty Road		
Movement	SBRT	
Design Speed	35	mph
Cycle Length	90	seconds
Control (Stop or Signal)	Signal	
Through Volume	699	vph
Number of Through Lanes	1	
Turning Volume	190	vph
Number of Turning Lanes	1	
Design Condition	A	A, B, or C
Turning Percentage	21%	1.1
Vehicles Per Cycle	4.8	
Storage Length	200	feet
Deceleration/Taper	50	feet
Calculated Turn Lane Length	250	feet
No Block Distance	600	feet
No Block Turn Lane Length	600	feet

PM Peak Ho	our	
2036 w/o Site traffic		
Seldom Seen Road & Liberty Road		
Movement	SBRT	
Design Speed	35	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	545	vph
Number of Through Lanes	1	
Turning Volume	192	vph
Number of Turning Lanes	1	
Design Condition	А	A, B, or C
Turning Percentage	26%	
Vehicles Per Cycle	5.3	
Storage Length	200	feet
Deceleration/Taper	50	feet
Calculated Turn Lane Length	250	feet
No Block Distance	525	feet
No Block Turn Lane Length	525	feet

PM Peak Hour		
2036 with Site traffic		
Seldom Seen Road & I	Liberty Ro	ad
Movement	SBRT	
Design Speed	35	mph
Cycle Length	100	seconds
Control (Stop or Signal)	Signal	
Through Volume	545	vph
Number of Through Lanes	1	
Turning Volume	195	vph
Number of Turning Lanes	1	
Design Condition	А	A, B, or C
Turning Percentage	26%	
Vehicles Per Cycle	5.4	
Storage Length	200	feet
Deceleration/Taper	50	feet
Calculated Turn Lane Length	250	feet
No Block Distance	525	feet
No Block Turn Lane Length	525	feet

APPENDIX E:

Capacity Analysis Reports Year 2016

2016 AM Peak Hour No Build 2

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	10	192	43	13	158	12	29	1	18	8	2	13
Conflicting Peds, #/hr	0	0	1	0	0	0	0	0	0	0	0	2
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized			None	-	-	None			None			None
Storage Length	175			175			125			125		
Veh in Median Storage, #		0	-		0		-	0			0	-
Grade, %		0		1	0	-		0			0	1.
Peak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93
Heavy Vehicles, %	1	1	1	1	1	1	0	0	0	0	0	0
Mvmt Flow	11	206	46	14	170	13	31	1	19	9	2	14

Major/Minor	Major1	Engline Fr	21911 2	Major2	SAL AN	Standa	Minor1		and the second	Minor2	1444	1
Conflicting Flow All	185	0	0	253	0	0	465	464	230	467	480	179
Stage 1						-	251	251		206	206	
Stage 2			-				214	213		261	274	
Critical Hdwy	4.11		-	4.11		-	7.1	6.5	6.2	7.1	6.5	6.2
Critical Hdwy Stg 1		1.					6.1	5.5	- 1	6.1	5.5	
Critical Hdwy Stg 2	-			-			6.1	5.5	-	6.1	5.5	-
Follow-up Hdwy	2.209			2.209	- +		3.5	4	3.3	3.5	4	3.3
Pot Cap-1 Maneuver	1396			1318			511	498	814	509	488	869
Stage 1							758	703	-	801	735	-
Stage 2		-	-		-	-	793	730		748	687	-
Platoon blocked, %												
Mov Cap-1 Maneuver	1395		-	1318		-	494	488	814	488	478	867
Mov Cap-2 Maneuver			14	-			494	488		488	478	
Stage 1	-			-		-	752	697	-	793	726	-
Stage 2				•			769	721	5.461	723	682	
Approach	EB	THE N	anter provide se a	WB	N.	Lug Vine	NB	1. 11.7	- And Aller	SB	(Stude	3 Parts
HCM Control Delay, s	0.3			0.6			11.6			10.7		
HCM LOS	3 12 30						В			В		

Minor Lane/Major Mvmt	NBLn1	NBLn2	EBL	EBT	EBR	WBL	WBT	WBF	SBLn1	SBLn2	and the second second second
Capacity (veh/h)	494	786	1395	-		1318	-		488	782	
HCM Lane V/C Ratio	0.063	0.026	0.008		-	0.011		13	0.018	0.021	
HCM Control Delay (s)	12.8	9.7	7.6		-	7.8			12.5	9.7	
HCM Lane LOS	В	A	Α		•	A		1 4	. В	Α	
HCM 95th %tile Q(veh)	0.2	0.1	0	-	-	0			- 0.1	0.1	

	≯	\rightarrow	-	†	- -	-						
Movement	EBL	EBR	NBL	NBT	SBT	SBR		STE GAL	i hy less	A STATISTICS		C II C IN
Lane Configurations	ή	7	ή	1	1.							
Volume (veh/h)	28	174	154	280	387	103						
Number	7	14	5	2	6	16						
Initial Q (Qb), veh	0	0	. 0	0	0	0						
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00						
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00						
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1845	1900						
Adj Flow Rate, veh/h	30	187	166	301	416	111						
Adj No. of Lanes	1	1	1	1	1	0						
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93						
Percent Heavy Veh, %	2	2	2	2	3	3						
Cap, veh/h	260	232	590	1297	977	261						
Arrive On Green	0.15	0.15	0.70	0.70	0.70	0.70						
Sat Flow, veh/h	1774	1583	872	1863	1404	375						
Grp Volume(v), veh/h	30	187	166	301	0	527						
Grp Sat Flow(s),veh/h/In	1774	1583	872	1863	0	1779						
Q Serve(g_s), s	1.1	8.7	7.7	4.5	0.0	9.7						
Cycle Q Clear(g_c), s	1.1	8.7	17.5	4.5	0.0	9.7						
Prop In Lane	1.00	1.00	1.00			0.21						
ane Grp Cap(c), veh/h	260	232	590	1297	0	1238						
//C Ratio(X)	0.12	0.81	0.28	0.23	0.00	0.43						
Avail Cap(c_a), veh/h	582	520	590	1297	0	1238						
ICM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00						
Jpstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00						
Jniform Delay (d), s/veh	28.2	31.5	8.8	4.2	0.0	5.0						
ncr Delay (d2), s/veh	0.2	6.5	1.2	0.4	0.0	1.1						
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0						
6ile BackOfQ(-26165%),veh/In	0.6	4.2	2.0	2.4	0.0	5.1						
nGrp Delay(d),s/veh	28.4	38.0	10.0	4.6	0.0	6.1						
nGrp LOS	С	D	А	Α		Α						
pproach Vol, veh/h	217			467	527							
pproach Delay, s/veh	36.7			6.5	6.1							
Approach LOS	D			A	A							
imer	1	2	3	4	5	6	7	8			dure W	
ssigned Phs		2		4		6						
hs Duration (G+Y+Rc), s		59.0		17.1		59.0						
hange Period (Y+Rc), s		6.0		6.0		6.0						
lax Green Setting (Gmax), s		53.0		25.0		53.0						
lax Q Clear Time (g_c+l1), s		19.5		10.7		11.7						
ireen Ext Time (p_c), s		7.3		0.6		7.5						
tersection Summary			Same and	in the sea					- Crine (V. Viet	1015
CM 2010 Ctrl Delay			11.7									
ICM 2010 LOS			В									

	۶	-	7	*	+	*	•	1	1	1	¥	1	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻሻ	- ††	7	ሻ	∱ β		ግኘ	- 44	1	ሻሻ	† †	1	
Volume (veh/h)	111	214	82	92	197	42	154	489	72	199	954	127	
Number	5	2	12	1	6	16	3	8	18	7	4	14	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1863	1863	1881	1881	1900	1863	1863	1863	1881	1881	1881	
Adj Flow Rate, veh/h	119	230	88	99	212	45	166	526	77	214	1026	137	
Adj No. of Lanes	2	2	1	1	2	0	2	2	1	2	2	1	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	2	2	2	1	1	1	2	2	2	1	1	1	
Cap, veh/h	233	460	326	272	390	81	261	1806	887	1105	1802	883	
Arrive On Green	0.07	0.13	0.13	0.07	0.13	0.12	0.10	0.68	0.67	0.09	0.67	0.66	
Sat Flow, veh/h	3442	3539	1583	1792	2946	614	3442	3539	1583	3476	3574	1599	
Grp Volume(v), veh/h	119	230	88	99	127	130	166	526	77	214	1026	137	
Grp Sat Flow(s), veh/h/li		1770	1583	1792	1787	1773	1721	1770	1583	1738	1787	1599	
Q Serve(g_s), s	3.3	6.0	4.7	4.7	6.6	6.9	4.6	6.0	1.5	2.8	15.3	2.9	
Cycle Q Clear(g_c), s	3.3	6.0	4.7	4.7	6.6	6.9	4.6	6.0	1.5	2.8	15.3	2.9	
Prop In Lane	1.00	0.0	1.00	1.00	0.0	0.35	1.00	0.0	1.00	1.00	10.0	1.00	
ane Grp Cap(c), veh/h		460	326	272	236	234	261	1806	887	1105	1802	883	
	0.51	0.50	0.27	0.36	0.54	0.55	0.64	0.29	0.09	0.19	0.57	0.16	
Avail Cap(c_a), veh/h	241	849	500	272	429	425	275	1806	887	1209	1802	883	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.33	1.33	1.33	1.33	1.33	1.33	
Jpstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
		40.5	33.4	34.1	40.5	40.8	43.6	8.8	6.7	9.6	10.7	7.2	
Jniform Delay (d), s/veł	1.7	40.5	0.4	0.8	40.5	2.0	43.0	0.0	0.2	0.1	1.3	0.4	
ncr Delay (d2), s/veh		0.0	0.4	0.0	0.0	2.0	4.4 0.0	0.4	0.2	0.0	0.0	0.4	
nitial Q Delay(d3),s/veh							2.4		0.0	1.3	7.8	1.3	
6ile BackOfQ(-26165%			2.1	2.3	3.4	3.5		2.9					
nGrp Delay(d),s/veh	46.7	41.3	33.8	34.9	42.4	42.8	48.1	9.2	6.9	9.7	12.0	7.6	
.nGrp LOS	D	D	С	С	D	D	D	A	A	Α	B	A	
pproach Vol, veh/h		437			356			769			1377		
pproach Delay, s/veh		41.3			40.5			17.4			11.2		
pproach LOS		D			D			В			В		
ïmer	1	2	3	4	5	6	7	8		1.1			
ssigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc)		18.0	13.6	55.4	12.8	18.2	13.0	56.0					
Change Period (Y+Rc),	s 7.0	6.0	7.0	6.0	7.0	6.0	7.0	6.0					
Aax Green Setting (Gm		23.0	7.0	38.0	6.0	23.0	9.0	36.0					
lax Q Clear Time (g_c+	-119,75	8.0	6.6	17.3	5.3	8.9	4.8	8.0					
Green Ext Time (p_c), s	0.0	2.6	0.0	11.1	0.0	2.5	0.2	13.0					
ntersection Summary	NA NA		14.445	11512-33		New York			125 50		The state of		
ICM 2010 Ctrl Delay		1/10/238	20.8	12 100		No land		No.		1	ist in	234	

	۶	-	7	*	+	*	1	Ť	1	4	ŧ	1	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		٦	f,		۳	A		7	∱ î≽		
Volume (veh/h)	19	8	55	35	1	18	11	622	41	32	1206	16	
Number	7	4	14	3	8	18	5	2	12	1	6	16	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	0.99		0.99	0.99		0.99	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1900	1881	1900	1792	1792	1900	1863	1863	1900	1863	1863	1900	
Adj Flow Rate, veh/h	20	9	59	38	1	19	12	669	44	34	1297	17	
Adj No. of Lanes	0	1	0	1	1	0	1	2	0	1	2	0	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	1	1	1	6	6	6	2	2	2	2	2	2	
Cap, veh/h	64	22	84	172	6	113	410	2735	180	667	2902	38	
Arrive On Green	0.08	0.08	0.08	0.08	0.08	0.08	1.00	1.00	1.00	1.00	1.00	1.00	
Sat Flow, veh/h	248	275	1065	1269	76	1437	416	3371	222	733	3577	47	
Grp Volume(v), veh/h	88	0	0	38	0	20	12	351	362	34	641	673	
Grp Sat Flow(s),veh/h/li	n1589	0	0	1269	0	1513	416	1770	1823	733	1770	1854	
Q Serve(g_s), s	3.0	0.0	0.0	0.0	0.0	1.2	0.0	0.0	0.0	0.0	0.0	0.0	
Cycle Q Clear(g_c), s	5.3	0.0	0.0	2.8	0.0	1.2	0.0	0.0	0.0	0.0	0.0	0.0	
Prop In Lane	0.23		0.67	1.00		0.95	1.00		0.12	1.00		0.03	
Lane Grp Cap(c), veh/h	169	0	0	172	0	119	410	1436	1479	667	1436	1505	
V/C Ratio(X)	0.52	0.00	0.00	0.22	0.00	0.17	0.03	0.24	0.24	0.05	0.45	0.45	
Avail Cap(c_a), veh/h	342	0	0	313	0	287	410	1436	1479	667	1436	1505	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.33	1.33	1.33	1.33	1.33	1.33	
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/vel	n 44.9	0.0	0.0	43.8	0.0	43.0	0.0	0.0	0.0	0.0	0.0	0.0	
Incr Delay (d2), s/veh	2.5	0.0	0.0	0.6	0.0	0.7	0.1	0.4	0.4	0.1	1.0	1.0	
Initial Q Delay(d3),s/veh	n 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(-26165%), \æ5 /lr	0.0 r	0.0	1.0	0.0	0.5	0.0	0.2	0.2	0.0	0.4	0.4	
LnGrp Delay(d),s/veh	47.3	0.0	0.0	44.4	0.0	43.7	0.1	0.4	0.4	0.1	1.0	1.0	
LnGrp LOS	D			D		D	A	А	Α	Α	Α	A	
Approach Vol, veh/h		88			58			725			1348		
Approach Delay, s/veh		47.3			44.1			0.4			1.0		
Approach LOS		D			D			А			А		
Timer	1	2	3	4	5	6	7	8			P. M. C.		
Assigned Phs		2		4		6		8					
Phs Duration (G+Y+Rc)		86.1		13.9		86.1		13.9					
Change Period (Y+Rc),		6.0		6.0		6.0		6.0					
Max Green Setting (Gm		69.0		19.0		69.0		19.0					
Max Q Clear Time (g_c-		2.0		7.3		2.0		4.8					
Green Ext Time (p_c), s		22.3		0.3		22.3		0.3					
Intersection Summary			and the second		angesta en	-					Stan Ser	- Alexandre	
HCM 2010 Ctrl Delay			3.7										
HCM 2010 LOS			А										

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	3	1	18	57	0	25	16	595	55	24	1159	1
Conflicting Peds, #/hr	0	0	8	0	0	2	0	0	0	0	0	5
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-		None	-	-	None			None			None
Storage Length		-		0	11		160		210	165		-
Veh in Median Storage, #	-	0	-	-	0			0			0	
Grade, %		0			0			0			0	-
Peak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	0	0	0	2	2	2	2	2	2
Mvmt Flow	3	1	19	61	0	27	17	640	59	26	1246	1

Major/Minor	Minor2		200,00	Minor1	125.4.5	Alter I	Major1		14. E. 11.	Major2	the state	10-
Conflicting Flow All	1662	1982	632	1359	1983	327	1255	0	0	642	0	0
Stage 1	1306	1306	-	676	676		-	•				-
Stage 2	.356	676		683	1307	•			-		1.0	
Critical Hdwy	7.54	6.54	6.94	7.5	6.5	6.9	4.14			4.14		-
Critical Hdwy Stg 1	6.54	5.54		6.5	5.5	-				-		$\mathbf{h}\in \mathcal{H}$
Critical Hdwy Stg 2	6.54	5.54		6.5	5.5		-	-	-		G4.	-
Follow-up Hdwy	3.52	4.02	3.32	3.5	4	3.3	2.22			2.22		-
Pot Cap-1 Maneuver	64	61	423	109	62	675	550	-		939		+
Stage 1	169	228		414	456	-			-		+	-
Stage 2	634	451		410	232	-			-			-
Platoon blocked, %									4		-	-
Mov Cap-1 Maneuver	58	57	420	98	58	671	550	÷.	+	935	-	
Mov Cap-2 Maneuver	58	57	1.1	98	58	-			-			-
Stage 1	163	220		401	441		-					-
Stage 2	587	436	10.00	378	224		- 1	1.30				-

Approach	EB	WB	NB	SB
HCM Control Delay, s	25.9	65.4	0.3	0.2
HCM LOS	D	F		

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	VBLn1V	VBLn2	SBL	SBT	SBR			11
Capacity (veh/h)	550		-	196	98	671	935		-			
HCM Lane V/C Ratio V/	0.031			0.121	0.625	0.04	0.028	-	-			
HCM Control Delay (s)	11.8	-		25.9	89.5	10.6	9	-	-			
HCM Lane LOS	В			D	F	В	Α	-				
HCM 95th %tile Q(veh)	0.1		-	0.4	3	0.1	0.1	-	•			

Number7414381Initial Q (Qb), veh00000Ped-Bike Adj(A_pbT)1.001.001.001.001.00Parking Bus, Adj1.001.001.001.001.00Adj Sat Flow, veh/h/in18631863190018811881Adj Flow Rate, veh/h31669017130Adj No. of Lanes11011Peak Hour Factor0.930.930.930.930.93Percent Heavy Veh, %22211Cap, veh/h2928711929212519Arrive On Green0.030.120.110.100.190.1Sat Flow, veh/h31015617107Grp Sat Flow(s), veh/h31015617107Grp Sat Flow(s), veh/h/In17740169117920169Q Serve(g_s), s1.50.08.98.00.03.Cycle Q Clear(g_c), s1.50.08.98.00.03.Prop In Lane1.000.760.590.000.2Avail Cap(c_a), veh/h3220287292037HCM Platoon Ratio1.001.001.001.001.001.001.00Upstream Filter(I)1.000.001.001.001.001.001.00 <t< th=""><th>14 29 8 5 0 0</th><th>NBT ↑1→ 513</th><th>NBR</th><th>SBL</th><th>007</th><th></th></t<>	14 29 8 5 0 0	NBT ↑1 → 513	NBR	SBL	007	
Lane Configurations \uparrow \uparrow \uparrow Volume (veh/h)296184159284Number7414381Initial Q (Qb), veh00000Ped-Bike Adj(A_pbT)1.001.001.001.001.00Parking Bus, Adj1.001.001.001.001.00Adj Sat Flow, veh/h/ln18631863190018811881Adj Flow Rate, veh/h31669017130Adj No. of Lanes11011Peak Hour Factor0.930.930.930.930.930.93Percent Heavy Veh, %22211Cap, veh/h2928711929212519Arrive On Green0.030.120.110.100.190.1Sat Flow, veh/h17747159751792662103Grp Volume(v), veh/h31015617107Grp Sat Flow(s), veh/h/ln17740169117920169Q Serve(g_s), s1.50.08.98.00.03.Cycle Q Clear(g_c), s1.50.08.98.00.03.Prop In Lane1.000.010.00.2207292032V/C Ratio(X) \checkmark 0.110.000.760.590.000.2Avail Cap(c_	4 29 8 5 0 0			and the second se	SBT	SBR
Volume (veh/h)2961841592844Number7414381Initial Q (Qb), veh00000Ped-Bike Adj(A_pbT)1.001.001.001.001.00Parking Bus, Adj1.001.001.001.001.00Adj Sat Flow, veh/h/ln18631863190018811881Adj Flow Rate, veh/h31669017130Adj Flow Rate, veh/h316690171304Adj No. of Lanes110111Peak Hour Factor0.930.930.930.930.930.930.93Percent Heavy Veh, %22211Cap, veh/h2928711929212519Arrive On Green0.030.120.110.100.190.1Sat Flow, veh/h17747159751792662103Grp Volume(v), veh/h31015617107Grp Sat Flow(s), veh/h/ln17740169117920169Q Serve(g_s), s1.50.08.98.00.03.Cycle Q Clear(g_c), s1.50.08.98.00.03.Prop In Lane1.000.010.0581.000.61.00Lane Grp Cap(c), veh/h2920207292032 <td>8 5 0 0</td> <td></td> <td></td> <td>۳.</td> <td>†₽</td> <td></td>	8 5 0 0			۳.	† ₽	
Number7414381Initial Q (Qb), veh00000Ped-Bike Adj(A_pbT)1.001.001.001.001.00Parking Bus, Adj1.001.001.001.001.00Adj Sat Flow, veh/h/ln18631863190018811881Adj Flow Rate, veh/h31669017130Adj No. of Lanes11011Peak Hour Factor0.930.930.930.930.930.93Percent Heavy Veh, %22211Cap, veh/h2928711929212519Arrive On Green0.030.120.110.100.190.1Sat Flow, veh/h17747159751792662103Grp Volume(v), veh/h31015617107Grp Sat Flow(s),veh/h/ln17740169117920169Q Serve(g_s), s1.50.08.98.00.03.Cycle Q Clear(g_c), s1.50.08.98.00.03.Prop In Lane1.000.760.590.000.2Avail Cap(c_a), veh/h3220287292037HCM Platoon Ratio1.001.001.001.001.001.001.00Upstream Filter(I)1.000.001.001.001.001.00<	0 0	0.0	81	62	938	44
Initial Q (Qb), veh 0 0 0 0 0 Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Adj Sat Flow, veh/h/In 1863 1863 1900 1881 1881 190 Adj Sat Flow, veh/h/In 1863 1863 1900 1881 1881 190 Adj Flow Rate, veh/h 31 66 90 171 30 4 Adj No. of Lanes 1 1 0 1 1 1 Peak Hour Factor 0.93 0.93 0.93 0.93 0.93 0.93 0.93 Percent Heavy Veh, % 2 2 2 1	-	2	12	1	6	16
Ped-Bike Adj(A_pbT) 1.00 </td <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>		0	0	0	0	0
Parking Bus, Adj 1.00 1.0	0 1.00		1.00	1.00		1.00
Adj Sat Flow, veh/h/ln18631863190018811881190Adj Flow Rate, veh/h316690171304Adj No. of Lanes11011Peak Hour Factor0.930.930.930.930.930.93Percent Heavy Veh, %22211Cap, veh/h2928711929212519Arrive On Green0.030.120.110.100.190.1Sat Flow, veh/h17747159751792662103Grp Volume(v), veh/h31015617107Grp Sat Flow(s), veh/h/ln17740169117920169Q Serve(g_s), s1.50.08.98.00.03.Cycle Q Clear(g_c), s1.50.08.98.00.03.Prop In Lane1.000.581.000.661.000.65Lane Grp Cap(c), veh/h2920207292032V/C Ratio(X) \checkmark 0.110.000.760.590.000.2Avail Cap(c_a), veh/h3220287292037HCM Platoon Ratio1.001.001.001.001.001.00Upstream Filter(I)1.000.001.001.001.001.00Uniform Delay (d), s/veh36.30.042.732.40.034. </td <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td>	1.00	1.00	1.00	1.00	1.00	1.00
Adj Flow Rate, veh/h316690171304Adj No. of Lanes11011Peak Hour Factor0.930.930.930.930.930.93Percent Heavy Veh, %22211Cap, veh/h2928711929212519Arrive On Green0.030.120.110.100.190.1Sat Flow, veh/h17747159751792662103Grp Volume(v), veh/h31015617107Grp Sat Flow(s), veh/h/ln17740169117920169Q Serve(g_s), s1.50.08.98.00.03.Cycle Q Clear(g_c), s1.50.08.98.00.03.Prop In Lane1.000.581.000.661.000.68Lane Grp Cap(c), veh/h2920207292032V/C Ratio(X) \checkmark 0.110.000.760.590.000.2Avail Cap(c_a), veh/h3220287292037HCM Platoon Ratio1.001.001.001.001.001.00Upstream Filter(I)1.000.001.001.001.0034.	0 1863	1863	1900	1863	1863	1900
Adj No. of Lanes11011Peak Hour Factor 0.93 0.93 0.93 0.93 0.93 0.93 0.93 Percent Heavy Veh, %22211Cap, veh/h2928711929212519Arrive On Green 0.03 0.12 0.11 0.10 0.19 0.1 Sat Flow, veh/h17747159751792662103Grp Volume(v), veh/h31015617107Grp Sat Flow(s), veh/h/ln17740169117920169Q Serve(g_s), s1.50.08.98.00.03.Cycle Q Clear(g_c), s1.50.08.98.00.03.Prop In Lane1.000.581.000.60.6Lane Grp Cap(c), veh/h2920287292032V/C Ratio(X) \checkmark 0.110.000.760.590.000.2Avail Cap(c_a), veh/h3220287292037HCM Platoon Ratio1.001.001.001.001.001.001.00Upstream Filter(I)1.000.001.001.001.0034.	7 31	552	87	67	1009	47
Peak Hour Factor 0.93 0.11 0.10 0.	0 1	2	0	1	2	0
Percent Heavy Veh, % 2 2 2 1 1 Cap, veh/h 292 87 119 292 125 19 Arrive On Green 0.03 0.12 0.11 0.10 0.19 0.1 Sat Flow, veh/h 1774 715 975 1792 662 103 Grp Volume(v), veh/h 31 0 156 171 0 7 Grp Sat Flow(s), veh/h/ln 1774 0 1691 1792 0 169 Q Serve(g_s), s 1.5 0.0 8.9 8.0 0.0 3. Cycle Q Clear(g_c), s 1.5 0.0 8.9 8.0 0.0 3. Prop In Lane 1.00 0.58 1.00 0.6 Lane Grp Cap(c), veh/h 292 0 22 20 22 32 V/C Ratio(X) A 0.11 0.00 0.76 0.59 0.00 0.2 Avail Cap(c_a), veh/h 322 0 287 292 <t< td=""><td></td><td>0.93</td><td>0.93</td><td>0.93</td><td>0.93</td><td>0.93</td></t<>		0.93	0.93	0.93	0.93	0.93
Cap, veh/h2928711929212519Arrive On Green 0.03 0.12 0.11 0.10 0.19 0.1 Sat Flow, veh/h17747159751792662103Grp Volume(v), veh/h31015617107Grp Sat Flow(s), veh/h/ln17740169117920169Q Serve(g_s), s1.50.08.98.00.03.Cycle Q Clear(g_c), s1.50.08.98.00.03.Prop In Lane1.000.581.000.6Lane Grp Cap(c), veh/h2920207292032V/C Ratio(X) \checkmark 0.110.000.760.590.000.2Avail Cap(c_a), veh/h3220287292037HCM Platoon Ratio1.001.001.001.001.001.00Upstream Filter(I)1.000.001.001.001.001.00Uniform Delay (d), s/veh36.30.042.732.40.034.	1 2	2	2	2	2	2
Arrive On Green 0.03 0.12 0.11 0.10 0.19 0.11 Sat Flow, veh/h 1774 715 975 1792 662 103 Grp Volume(v), veh/h 31 0 156 171 0 7 Grp Sat Flow(s), veh/h/ln 1774 0 1691 1792 0 169 Q Serve(g_s), s 1.5 0.0 8.9 8.0 0.0 $3.$ Cycle Q Clear(g_c), s 1.5 0.0 8.9 8.0 0.0 $3.$ Prop In Lane 1.00 0.58 1.00 0.66 Lane Grp Cap(c), veh/h 292 0 207 292 0 32 V/C Ratio(X) \checkmark 0.11 0.00 0.76 0.59 0.00 0.2 Avail Cap(c_a), veh/h 322 0 287 292 0 37 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 0.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 36.3 0.0 42.7 32.4 0.0 $34.$		1637	257	515	1876	87
Sat Flow, veh/h17747159751792662103Grp Volume(v), veh/h31015617107Grp Sat Flow(s), veh/h/ln17740169117920169Q Serve(g_s), s1.50.08.98.00.03.Cycle Q Clear(g_c), s1.50.08.98.00.03.Prop In Lane1.000.581.000.66Lane Grp Cap(c), veh/h29202072920V/C Ratio(X) \checkmark 0.110.000.760.590.000.2Avail Cap(c_a), veh/h3220287292037HCM Platoon Ratio1.001.001.001.001.001.00Upstream Filter(I)1.000.001.001.001.001.00Uniform Delay (d), s/veh36.30.042.732.40.034.		0.71	0.70	0.06	0.72	0.71
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3066	482	1774	3444	160
Grp Sat Flow(s),veh/h/ln 1774 0 1691 1792 0 169 Q Serve(g_s), s 1.5 0.0 8.9 8.0 0.0 3. Cycle Q Clear(g_c), s 1.5 0.0 8.9 8.0 0.0 3. Prop In Lane 1.00 0.58 1.00 0.6 Lane Grp Cap(c), veh/h 292 0 207 292 0 32 V/C Ratio(X) A 0.11 0.00 0.76 0.59 0.00 0.2 Avail Cap(c_a), veh/h 322 0 287 292 0 37 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 0.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 36.3 0.0 42.7 32.4 0.0 34.		318	321	67	518	538
Q Serve(g_s), s 1.5 0.0 8.9 8.0 0.0 3. Cycle Q Clear(g_c), s 1.5 0.0 8.9 8.0 0.0 3. Prop In Lane 1.00 0.58 1.00 0.6 Lane Grp Cap(c), veh/h 292 0 207 292 0 32 V/C Ratio(X) ▲ 0.11 0.00 0.76 0.59 0.00 0.2 Avail Cap(c_a), veh/h 322 0 287 292 0 37 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 0.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 36.3 0.0 42.7 32.4 0.0 34.		1770	1778	1774	1770	1834
Cycle Q Clear(g_c), s 1.5 0.0 8.9 8.0 0.0 3. Prop In Lane 1.00 0.58 1.00 0.6 Lane Grp Cap(c), veh/h 292 0 207 292 0 32 V/C Ratio(X) ▲ 0.11 0.00 0.76 0.59 0.00 0.2 Avail Cap(c_a), veh/h 322 0 287 292 0 37 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 0.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 36.3 0.0 42.7 32.4 0.0 34.		6.8	7.0	1.7	13.2	13.3
Prop In Lane 1.00 0.58 1.00 0.6 Lane Grp Cap(c), veh/h 292 0 207 292 0 32 V/C Ratio(X) A 0.11 0.00 0.76 0.59 0.00 0.2 Avail Cap(c_a), veh/h 322 0 287 292 0 37 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 0.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 36.3 0.0 42.7 32.4 0.0 34.		6.8	7.0	1.7	13.2	13.3
Lane Grp Cap(c), veh/h 292 0 207 292 0 32 V/C Ratio(X) A 0.11 0.00 0.76 0.59 0.00 0.2 Avail Cap(c_a), veh/h 322 0 287 292 0 37 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 0.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 36.3 0.0 42.7 32.4 0.0 34.		0.0	0.27	1.00		0.09
V/C Ratio(X) A 0.11 0.00 0.76 0.59 0.00 0.2 Avail Cap(c_a), veh/h 322 0 287 292 0 37 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 0.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 36.3 0.0 42.7 32.4 0.0 34.		945	949	515	964	999
Avail Cap(c_a), veh/h3220287292037HCM Platoon Ratio1.001.001.001.001.001.001.00Upstream Filter(I)1.000.001.001.000.001.00Uniform Delay (d), s/veh36.30.042.732.40.034.		0.34	0.34	0.13	0.54	0.54
HCM Platoon Ratio1.001.001.001.001.001.00Upstream Filter(I)1.000.001.001.000.001.00Uniform Delay (d), s/veh36.30.042.732.40.034.		945	949	579	964	999
Upstream Filter(I)1.000.001.001.000.001.0Uniform Delay (d), s/veh36.30.042.732.40.034.		1.33	1.33	1.33	1.33	1.33
Uniform Delay (d), s/veh 36.3 0.0 42.7 32.4 0.0 34.		1.00	1.00	1.00	1.00	1.00
		7.7	7.9	9.4	8.1	8.1
Incr Delay (d2), s/veh 0.2 0.0 7.1 3.0 0.0 0.		1.0	1.0	0.1	2.2	2.1
		0.0	0.0	0.0	0.0	0.0
		3.6	3.6	0.8	6.9	7.2
		8.7	8.8	9.5	10.2	10.2
	D B	0.7 A	A	A	B	B
	D D	670	~		1123	U
Approach Vol, veh/h 187 248		8.8			10.2	
Approach Delay, s/veh 47.6 35.3					10.2 B	
Approach LOS D D		A			D	
	6 7	and the second se			A Statement	Share a
	6 7					
Phs Duration (G+Y+Rc), s 9.4 58.4 15.0 17.2 8.3 59.	.5 8.3					
Change Period (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.		6.0				
Max Green Setting (Gmax), s 7.0 44.0 9.0 16.0 7.0 44.		21.0				
Max Q Clear Time (g_c+l1), s 3.7 9.0 10.0 10.9 2.8 15.		5.9				
Green Ext Time (p_c), s 0.0 13.0 0.0 0.3 0.0 12.	.1 0.0	0.6				
Intersection Summary					A STATE PARTY	
HCM 2010 Ctrl Delay 15.7						
HCM 2010 LOS B						

2016 AM Peak Hour Full Build

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	10	195	85	22	163	12	51	1	23	8	2	13
Conflicting Peds, #/hr	0	0	1	0	0	0	0	0	0	0	0	2
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None		-	None	-		None
Storage Length	175			175	-	-	125	-	-	125	-	-
Veh in Median Storage, #	-	0	-	-	0	-		0	-	-	0	
Grade, %		0	-		0	-	7	0	-	-	0	
Peak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93
Heavy Vehicles, %	1	1	1	1	1	1	0	0	0	0	0	0
Mvmt Flow	11	210	91	24	175	13	55	1	25	9	2	14
Major/Minor	Major1	17/0-1	11/16/2	Major2	10130	15578	Minor1	Merral	in the second	Minor2	Net .	11.12.0
Conflicting Flow All	190	0	0	301	0	0	516	514	255	521	554	185
Stage 1	-			-	-		277	277		231	231	
Stage 2	-		-		+		239	237	-	290	323	4
Critical Hdwy	4.11	-	-	4.11	-		7.1	6.5	6.2	7.1	6.5	6.2
Critical Hdwy Stg 1	-	-	-	-			6.1	5.5	-	6.1	5.5	-
Critical Hdwy Stg 2	-	-	-	-	-		6.1	5.5	-	6.1	5.5	-
Follow-up Hdwy	2.209			2.209	-		3.5	4	3.3	3.5	4	3.3
Pot Cap-1 Maneuver	1390		-	1266			473	467	789	469	443	862
Stage 1	-	-	-	1. 1. 1.	-	-	734	685		7.76	717	-
Stage 2	-		-	-		-	769	713	-	722	654	-
Platoon blocked, %		-	+									
Mov Cap-1 Maneuver	1389		-	1266	-		454	454	789	443	430	860
Mov Cap-2 Maneuver	-					-	454	454	-	443	430	-
Stage 1	-		-	-	-	-	728	680	-	769	702	-
Stage 2	-	•	-			•	739	698	1.14	693	649	-
Approach	EB	The second		WB	S" - 1	1-11131	NB			SB	14150	
HCM Control Delay, s	0.3			0.9			12.7			11		
HCM LOS							В			В		
Minor Lane/Major Mvmt	NBLn1	NBLn2	EBL	EBT EBR	WBL	WBT	WBR SBLn1	SBLn2		315 365 A	A LAND	14
Capacity (veh/h)	454	765	1389		1266		- 443	759				
HCM Lane V/C Ratio	0.121	0.034	0.008		0.019		- 0.019	0.021				
HCM Control Delay (s)	14	9.9	7.6		7.9		- 13.3	9.8				
HCM Lane LOS	В	A	A		A		- B	А				
HCM 95th %tile Q(veh)	0.4	0.1	0		0.1	-	- 0.1	0.1				

	۶	\mathbf{r}	1	1	Ļ	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	۴	ť	ኻ	1	₽.		
Volume (veh/h)	30	179	163	280	387	108	
Number	7	14	5	2	6	16	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1845	1900	
Adj Flow Rate, veh/h	32	192	175	301	416	116	
Adj No. of Lanes	1	1	1	1	1	0	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	2	2	2	2	3	3	
Cap, veh/h	265	237	582	1292	963	269	
Arrive On Green	0.15	0.15	0.69	0.69	0.69	0.69	
Sat Flow, veh/h	1774	1583	868	1863	1389	387	
Grp Volume(v), veh/h	32	192	175	301	0	532	
Grp Sat Flow(s), veh/h/ln	1774	1583	868	1863	0	1776	
Q Serve(g_s), s	1.2	9.0	8.4	4.5	0.0	10.0	
Cycle Q Clear(g_c), s	1.2	9.0	18.5	4.5	0.0	10.0	
Prop In Lane	1.00	1.00	1.00			0.22	
Lane Grp Cap(c), veh/h	265	237	582	1292	0	1232	
	0.12	0.81	0.30	0.23	0.00	0.43	
Avail Cap(c_a), veh/h	580	518	582	1292	0	1232	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	
Uniform Delay (d), s/veh	28.1	31.5	9.2	4.3	0.0	5.1	
Incr Delay (d2), s/veh	0.2	6.5	1.3	0.4	0.0	1.1	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(-26165%),veh/In		4.3	2.2	2.4	0.0	5.3	
LnGrp Delay(d),s/veh	28.3	38.0	10.5	4.7	0.0	6.2	
LnGrp LOS	C	D	В	Α		А	
Approach Vol, veh/h	224			476	532		
Approach Delay, s/veh	36.6			6.8	6.2		
Approach LOS	D			A	A		
Timer	1	2	3	4	5	6	7 8
Assigned Phs		2		4		6	
Phs Duration (G+Y+Rc), s		59.0		17.4		59.0	
Change Period (Y+Rc), s		6.0		6.0		6.0	
Max Green Setting (Gmax), s		53.0		25.0		53.0	
Max Q Clear Time (g_c+l1), s		20.5		11.0		12.0	
Green Ext Time (p_c), s		7.4		0.6		7.6	
			A DECIMAL DECIMAL PROPERTY AND A DECIMAL DECIM	ALL DAVID AND ALL DO	a subject to be to be	AND INCOME.	the second s
Intersection Summary						all also	
HCM 2010 Ctrl Delay			12.0				

Seldom Seen Acres Senior Living 2016 AM Peak Hour, Full Build

	۶	-	¥	1	+	*	1	t	1	4	ŧ	1	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻካ	*	1	ሻ	ħ ₽		ካካ	<u>†</u> †	1	ሻሻ	- † †	T.	
Volume (veh/h)	119	214	82	92	197	47	154	552	72	202	987	131	
Number	5	2	12	1	6	16	3	8	18	7	4	14	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1863	1863	1881	1881	1900	1863	1863	1863	1881	1881	1881	
Adj Flow Rate, veh/h	128	230	88	99	212	51	166	594	77	217	1061	141	
Adj No. of Lanes	2	2	1	1	2	0	2	2	1	2	2	1	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	2	2	2	1	1	1	2	2	2	1	1	1	
Cap, veh/h	235	460	326	272	378	89	261	1806	887	1046	1802	883	
Arrive On Green	0.07	0.13	0.13	0.07	0.13	0.12	0.10	0.68	0.67	0.09	0.67	0.66	
Sat Flow, veh/h	3442	3539	1583	1792	2872	676	3442	3539	1583	3476	3574	1599	
Grp Volume(v), veh/h	128	230	88	99	130	133	166	594	77	217	1061	141	
Grp Sat Flow(s), veh/h/l		1770	1583	1792	1787	1762	1721	1770	1583	1738	1787	1599	
Q Serve(g_s), s	3.6	6.0	4.7	4.7	6.8	7.1	4.6	6.9	1.5	2.8	16.2	3.0	
Cycle Q Clear(g_c), s	3.6	6.0	4.7	4.7	6.8	7.1	4.6	6.9	1.5	2.8	16.2	3.0	
Prop In Lane	1.00		1.00	1.00		0.38	1.00		1.00	1.00		1.00	
Lane Grp Cap(c), veh/h	1 235	460	326	272	235	232	261	1806	887	1046	1802	883	
V/C Ratio(X) √	0.54	0.50	0.27	0.36	0.55	0.57	0.64	0.33	0.09	0.21	0.59	0.16	
Avail Cap(c_a), veh/h	241	849	500	272	429	423	275	1806	887	1151	1802	883	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.33	1.33	1.33	1.33	1.33	1.33	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/ve	h 45.1	40.5	33.4	34.1	40.7	41.0	43.6	9.0	6.7	9.7	10.8	7.2	
Incr Delay (d2), s/veh	2.4	0.8	0.4	0.8	2.0	2.2	4.4	0.5	0.2	0.1	1.4	0.4	
Initial Q Delay(d3),s/ve	h 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(-26165%		3.0	2.1	2.3	3.5	3.6	2.4	3.4	0.7	1.3	8.2	1.4	
LnGrp Delay(d),s/veh	47.5	41.3	33.8	34.9	42.7	43.2	48.1	9.5	6.9	9.8	12.3	7.6	
LnGrp LOS	D	D	С	С	D	D	D	А	Α	Α	В	Α	
Approach Vol, veh/h		446			362			837			1419		
Approach Delay, s/veh		41.6			40.7			16.9			11.4		
Approach LOS		D			D			В			В		
Timer	1	2	3	4	5	6	7	8	alalah.	All and	12.976	1 August	
Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Ro), \$3.0	18.0	13.6	55.4	12.8	18.2	13.0	56.0					
Change Period (Y+Rc)	, s 7.0	6.0	7.0	6.0	7.0	6.0	7.0	6.0					
Max Green Setting (Gn		23.0	7.0	38.0	6.0	23.0	9.0	36.0					
Max Q Clear Time (g_c	+116,75	8.0	6.6	18.2	5.6	9.1	4.8	8.9					
Green Ext Time (p_c),	s 0.0	2.6	0.0	11.5	0.0	2.5	0.3	13.8					
Intersection Summary			64		See 1							STREET.	Carlo and a state of the second
HCM 2010 Ctrl Delay			20.8										
HCM 2010 LOS			С										

	۶	-	7	*	-	*	1	1	1	4	Ŧ	1	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		۲	4		ሻ	_ ≜ †₽		۳	† Þ		
Volume (veh/h)	19	8	55	35	1	18	11	698	41	32	1246	16	
Number	7	4	14	3	8	18	5	2	12	1	6	16	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	0.99		0.99	0.99		0.99	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1900	1881	1900	1792	1792	1900	1863	1863	1900	1863	1863	1900	
Adj Flow Rate, veh/h	20	9	59	38	1	19	12	751	44	34	1340	17	
Adj No. of Lanes	0	1	0	1	1	0	1	2	0	1	2	0	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	1	1	1	6	6	6	2	2	2	2	2	2	
Cap, veh/h	64	22	84	172	6	113	396	2757	161	623	2904	37	
Arrive On Green	0.08	0.08	0.08	0.08	0.08	0.08	1.00	1.00	1.00	1.00	1.00	1.00	
Sat Flow, veh/h	248	275	1065	1269	76	1437	400	3398	199	680	3579	45	
Grp Volume(v), veh/h	88	0	0	38	0	20	12	391	404	34	662	695	
Grp Sat Flow(s), veh/h/lr	1589	0	0	1269	0	1513	400	1770	1827	680	1770	1855	
Q Serve(g_s), s	3.0	0.0	0.0	0.0	0.0	1.2	0.0	0.0	0.0	0.0	0.0	0.0	
Cycle Q Clear(g_c), s	5.3	0.0	0.0	2.8	0.0	1.2	0.0	0.0	0.0	0.0	0.0	0.0	
Prop In Lane	0.23		0.67	1.00		0.95	1.00		0.11	1.00		0.02	
Lane Grp Cap(c), veh/h	169	0	0	172	0	119	396	1436	1482	623	1436	1505	
V/C Ratio(X)	0.52	0.00	0.00	0.22	0.00	0.17	0.03	0.27	0.27	0.05	0.46	0.46	
Avail Cap(c_a), veh/h	342	0	0	313	0	287	396	1436	1482	623	1436	1505	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.33	1.33	1.33	1.33	1.33	1.33	
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	144.9	0.0	0.0	43.8	0.0	43.0	0.0	0.0	0.0	0.0	0.0	0.0	
Incr Delay (d2), s/veh	2.5	0.0	0.0	0.6	0.0	0.7	0.1	0.5	0.5	0.2	1.1	1.0	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(-26165%),vehylr	0.0	0.0	1.0	0.0	0.5	0.0	0.2	0.2	0.0	0.4	0.4	
LnGrp Delay(d),s/veh	47.3	0.0	0.0	44.4	0.0	43.7	0.1	0.5	0.5	0.2	1.1	1.0	
LnGrp LOS	D			D	Siles (D	Α	Α	Α	Α	Α	Α	(A) F 当人世代的"生命"。
Approach Vol, veh/h		88			58			807			1391		
Approach Delay, s/veh		47.3			44.1			0.5			1.0		
Approach LOS		D			D			А			А		
Timer	1	2	3	4	5	6	7	8	\$1.)(P)			W. Bow	
Assigned Phs		2		4		6		8					
Phs Duration (G+Y+Rc)		86.1		13.9		86.1		13.9					
Change Period (Y+Rc),		6.0		6.0		6.0		6.0					
Max Green Setting (Gm		69.0		19.0		69.0		19.0					
Max Q Clear Time (g_c-		2.0		7.3		2.0		4.8					
Green Ext Time (p_c), s		25.1		0.3		25.1		0.3					
Intersection Summary						and the				1. S.			
HCM 2010 Ctrl Delay			3.6										
HCM 2010 LOS			А										

0.2

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	0	0	10	0	0	25	0	634	49	0	1220	1
Conflicting Peds, #/hr	0	0	8	0	0	2	0	0	0	0	0	5
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None		-	None		-	None
Storage Length	-	-	0		1.1.4	0		-	210	- 1	-	
Veh in Median Storage, #	-	0	-	-	0			0	-		0	
Grade, %	-	0			0		-	0	-	- /-	0	0
Peak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	0	0	0	2	2	2	2	2	2
Mvmt Flow	0	0	11	0	0	27	0	682	53	0	1312	1

Minor2		NY STRA	Minor1		Think se	Major1	Fulleral	ANTING THE	Major2	1997 (F.	1 de
1663	2004	664	1348	2005	348	1321	0	0	684	0	0
1320	1320	-	684	684				-	-	-	-
343	684	-	664	1321		-	-	-		-	-
7.54	6.54	6.94	7.5	6.5	6.9	4.14	-	-	4.14	-	-
6.54	5.54	-	6.5	5.5				-		-	-
6.54	5.54	-	6.5	5.5	-	-		-	-		-
3.52	4.02	3.32	3.5	4	3.3	2.22	-	-	2.22		-
64	59	403	111	60	654	519	-	-	905	-	-
166	225	175412	410	452			-		Sec. N. Lei		-
646	447	-	421	228	-		-	4	-	-	-
							1	-			-
61	59	400	108	60	650	519	-	-	901	-	-
61	59	4	108	60			-			-	-
165	224		409	451	-	-	-	-	-	-	-
617	446		410	226	1.0	1.1.1.1		-		-	-
	1663 1320 343 7.54 6.54 6.54 6.54 3.52 64 166 646 61 61 61 165	1663 2004 1320 1320 343 684 7.54 6.54 6.54 5.54 6.54 5.54 3.52 4.02 64 59 166 225 646 447 61 59 165 224	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						

Approach	EB	WB	NB	SB
HCM Control Delay, s	14.2	10.8	0	0
HCM LOS	В	В		

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	519	-	-	400	650	901	-	-	
HCM Lane V/C Ratio	1.5.4		-	0.027	0.041			-	
HCM Control Delay (s)	0	-	-	14.2	10.8	0			
HCM Lane LOS	А	-		В	В	Α	1		
HCM 95th %tile Q(veh)	0	-	-	0.1	0.1	0		-	

	۶	-	7	4	+	*	1	†	/	1	¥	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۳	ţ,		۳	ţ,		ሻ	† ₽		٦	↑ ⊅	
Volume (veh/h)	29	64	87	177	29	52	30	522	108	77	954	44
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1881	1881	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	31	69	94	190	31	56	32	561	116	83	1026	47
Adj No. of Lanes	1	1	0	1	1	0	1	2	0	1	2	0
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	2	2	2	11	1	1	2	2	2	2	2	2
Cap, veh/h	296	90	123	292	116	210	341	1539	317	496	1862	85
Arrive On Green	0.03	0.13	0.12	0.10	0.19	0.18	0.04	0.70	0.69	0.06	0.72	0.71
Sat Flow, veh/h	1774	716	975	1792	602	1087	1774	2923	603	1774	3447	158
Grp Volume(v), veh/h	31	0	163	190	0	87	32	339	338	83	527	546
Grp Sat Flow(s),veh/h/In	1774	0	1691	1792	0	1689	1774	1770	1756	1774	1770	1835
Q Serve(g_s), s	1.5	0.0	9.3	8.9	0.0	4.4	0.8	7.7	7.9	2.1	13.9	13.9
Cycle Q Clear(g_c), s	1.5	0.0	9.3	8.9	0.0	4.4	0.8	7.7	7.9	2.1	13.9	13.9
Prop In Lane	1.00		0.58	1.00		0.64	1.00		0.34	1.00		0.09
Lane Grp Cap(c), veh/h	296	0	214	292	0	326	341	932	925	496	956	991
V/C Ratio(X)	0.10	0.00	0.76	0.65	0.00	0.27	0.09	0.36	0.37	0.17	0.55	0.55
Avail Cap(c_a), veh/h	326	0	287	292	0	372	424	932	925	554	956	991
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.33	1.33	1.33	1.33	1.33	1.33
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	36.0	0.0	42.5	32.5	0.0	34.6	10.6	8.3	8.4	9.7	8.4	8.5
Incr Delay (d2), s/veh	0.2	0.0	8.1	5.1	0.0	0.4	0.1	1.1	1.1	0.2	2.3	2.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(-26165%),veh/In		0.0	4.8	4.8	0.0	2.1	0.4	3.9	4.0	1.0	7.3	7.5
LnGrp Delay(d),s/veh	36.1	0.0	50.6	37.6	0.0	35.0	10.7	9.4	9.5	9.9	10.7	10.7
LnGrp LOS	D	With Lar	D	D	1210	D	В	Α	А	А	В	В
Approach Vol, veh/h		194			277			709			1156	
Approach Delay, s/veh		48.3			36.8			9.5			10.6	
Approach LOS		D			D			А			В	
Timer	1	2	3	4	5	6	7	8		NAME OF		A COLOR
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	9.7	57.6	15.0	17.6	8.4	59.0	8.3	24.3				
Change Period (Y+Rc), s	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0				
Max Green Setting (Gmax), s	7.0	44.0	9.0	16.0	7.0	44.0	4.0	21.0				
Max Q Clear Time (g_c+l1), s	4.1	9.9	10.9	11.3	2.8	15.9	3.5	6.4				
Green Ext Time (p_c), s	0.0	13.5	0.0	0.3	0.0	12.5	0.0	0.6				
Intersection Summary	No. Con	A COLOR										Sédes:
HCM 2010 Ctrl Delay			16.5									
HCM 2010 LOS			В									

	۶	-	7	-	+	×.	1	1	1	L#	1	¥
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT
Lane Configurations	۲	¢Î,		٣	4Î		A	ተኈ			a l	朴臣
Volume (veh/h)	3	1	8	84	0	12	16	665	64	6	42	1182
Number	7	4	14	3	8	18	5	2	12		1	6
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0		0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1900	1863	1863	1900		1863	1863
Adj Flow Rate, veh/h	3	1	9	90	0	13	17	715	69		45	1271
Adj No. of Lanes	1	1	0	1	1	0	1	2	0		1	2
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93		0.93	0.93
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2		2	2
Cap, veh/h	184	14	127	187	0	139	415	2584	249		576	2875
Arrive On Green	0.09	0.09	0.09	0.09	0.00	0.09	0.79	0.79	0.79		1.00	1.00
Sat Flow, veh/h	1395	161	1447	1399	0	1583	434	3262	315		687	3629
Grp Volume(v), veh/h	3	0	10	90	0	13	17	388	396		45	620
Grp Sat Flow(s),veh/h/ln	1395	0	1607	1399	0	1583	434	1770	1807		687	1770
Q Serve(g_s), s	0.2	0.0	0.6	6.3	0.0	0.8	0.8	5.8	5.8		0.5	0.0
Cycle Q Clear(g_c), s	1.0	0.0	0.6	6.9	0.0	0.8	0.8	5.8	5.8		6.4	0.0
Prop In Lane	1.00		0.90	1.00		1.00	1.00		0.17		1.00	
Lane Grp Cap(c), veh/h	184	0	141	187	0	139	415	1402	1432		576	1402
V/C Ratio(X) 入	0.02	0.00	0.07	0.48	0.00	0.09	0.04	0.28	0.28		0.08	0,44
Avail Cap(c_a), veh/h	368	0	354	372	0	348	415	1402	1432		576	1402
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		2.00	2.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00		1.00	1.00
Uniform Delay (d), s/veh	42.4	0.0	41.9	45.0	0.0	42.0	2.2	2.8	2.8		0.2	0.0
Incr Delay (d2), s/veh	0.0	0.0	0.2	1.9	0.0	0.3	0.2	0.5	0.5		0.3	1.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
%ile BackOfQ(-26165%),veh/ln	0.1	0.0	0.3	2.5	0.0	0.3	0.1	3.0	3.1		0.1	0.4
LnGrp Delay(d),s/veh	42.4	0.0	42.1	46.9	0.0	42.2	2.4	3.3	3.2		0.5	1.0
LnGrp LOS	D	0.0	D	D	0.0	D	A	A	A		A	A
Approach Vol, veh/h	5	13			103			801				1317
Approach Delay, s/veh		42.2	ten evente		46.4			3.2				1.0
Approach LOS		42.2 D			40.4 D			A				A
	4		0	4	5	6	7	8	The second second			A
Timer Assigned Phs		2	3	4	C	6	1	8				a stand to the
Phs Duration (G+Y+Rc), s		85.2		14.8		85.2		14.8				
Change Period (Y+Rc), s		6.0		6.0		6.0		6.0				
Max Green Setting (Gmax), s		66.0		22.0		66.0		22.0				
Max Q Clear Time (g_c+11), s		7.8		3.0		8.4		8.9				
Green Ext Time (p_c), s		22.4		0.3		22.3		0.3				
u = 71		22.4		0.0	ALC: NOT STATE	22.0	Contraction of the last	0.0	And And Antic	Contraction of the	N. M. C. S. S.	PROTOTO DE
Intersection Summary HCM 2010 Ctrl Delay	1 Charles		4.1	GT MALLER		ngestrie est	and the second		ALL CONTROL	REAL PROPERTY IN		CHARLEN .
HCM 2010 LOS			4.1 A									
Notes			Л				113125-011		Are literat		158.201 - 183	

Notes

User approved ignoring U-Turning movement.

5/5/201	5
J/J/201	U U

	4	
Movement	SBR	
LareConfigurations		
Volume (veh/h)		
Number	16	
Initial Q (Qb), veh	0	
Ped-Bike Adj(A_pbT)	1.00	
Parking Bus, Adj	1.00	
Adj Sat Flow, veh/h/ln	1900	
Adj Flow Rate, veh/h	1	
Adj No. of Lanes	0	
Peak Hour Factor	0.93	
Percent Heavy Veh, %	2	
Cap, veh/h	2	
Arrive On Green	1.00	
Sat Flow, veh/h	3	
Grp Volume(v), veh/h	652	
Grp Sat Flow(s),veh/h/In	1862	
Q Serve(g_s), s	0.0	
Cycle Q Clear(g_c), s	0.0	
Prop In Lane	0.00	
Lane Grp Cap(c), veh/h	1475	
V/C Ratio(X)	0.44	
Avail Cap(c_a), veh/h	1475	
HCM Platoon Ratio	2.00	
Upstream Filter(I)	1.00	
Uniform Delay (d), s/veh	0.0	
Incr Delay (d2), s/veh	1.0	
Initial Q Delay(d3),s/veh	0.0	
%ile BackOfQ(-26165%),veh/In	0.4	
LnGrp Delay(d),s/veh	1.0	
LnGrp LOS	Α	
Approach Vol, veh/h		
Approach Delay, s/veh Approach LOS		
Timer		The Part of the Pa

2016 PM Peak Hour No Build

2.9

5/1/2015

Intersection

									1.000			
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	25	314	42	34	340	29	43	0	33	25	1	21
Conflicting Peds, #/hr	0	0	1	0	0	0	0	0	0	0	0	2
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized		-	None	-		None		-	None	-	-	None
Storage Length	175	in it	1.11.14	175	-		0		1000	0	-	1.7.
Veh in Median Storage, #		0	-		0			0		-	0	-
Grade, %	-	0	-	- 11 - 11 -	0			0	11-1-		0	126
Peak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93
Heavy Vehicles, %	1	1	1	1	1	1	0	0	0	0	0	0
Mvmt Flow	27	338	45	37	366	31	46	0	35	27	1	23
Major/Minor	Major1			Major2		- ANT	Minor1	Ing and		Minor2	AP IN EAS	
Conflicting Flow All	399	0	0	383	0	0	882	886	360	888	893	384
Stage 1		-	-	÷	-	-	414	414	-	456	456	-
Stage 2	2.2.2. 4	21014		A North	1	-	468	472	-	432	437	-
Critical Hdwy	4.11			4.11	-	-	7.1	6.5	6.2	7.1	6.5	6.2
Critical Hdwy Stg 1	-	1000	-	A Charles Marches	10	· .	6.1	5.5	C-INE-L	6.1	5.5	
Critical Hdwy Stg 2	-	-	-	-	-		6.1	5.5	-	6.1	5.5	
Follow-up Hdwy	2.209		11	2.209	•		3.5	4	3.3	3.5	4	3.3
Pot Cap-1 Maneuver	1165	-	-	1181	-		269	286	689	267	283	668
Stage 1	2007	-		Sint in it.	-	-	620	597	- 1	588	572	
Stage 2	-	-	-		-	-	579	562	-	606	583	•
Platoon blocked, %		-	-		-	-						
Nov Cap-1 Maneuver	1164	-	-	1181	-	-	248	270	689	242	267	666
Nov Cap-2 Maneuver	19.6.4		-	and the second	101724	-	248	270	-	242	267	-
Stage 1	-	-		-		•	606	583	-	573	553	
Stage 2	•		(). (*)	-			540	543	•	561	569	
Approach	EB		C. S. S.	WB	1 - Julie	The second	NB			SB		
-ICM Control Delay, s	0.5			0.7			17.5			16.7		
HCM LOS							С			С		
Vinor Lane/Major Mvmt	NBLn1	NBLn2	EBL	EBT EBR	WBL	WBT	WBR SBLn1	SBLn2				
Capacity (veh/h)	248	689	1164		1181	-	- 242	624				
HCM Lane V/C Ratio			0.023	1.1	0.031		- 0.111	0.038				
HCM Control Delay (s)	22.8	10.5	8.2		8.1		- 21.7	11				
HCM Lane LOS	С	В	A		A		- C	В				

	۶	*	1	†	Ŧ	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	٦	1	٢	1	ţ,			
Volume (veh/h)	117	205	187	472	302	107		
Number	7	14	5	2	6	16		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1845	1900		
Adj Flow Rate, veh/h	126	220	201	508	325	115		
Adj No. of Lanes	1	1	1	1	1	0		
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93		
Percent Heavy Veh, %	2	2	2	2	3	3		
Cap, veh/h	344	307	529	1014	709	251		
Arrive On Green	0.19	0.19	0.54	0.54	0.54	0.54		
Sat Flow, veh/h	1774	1583	945	1863	1302	461		
Grp Volume(v), veh/h	126	220	201	508	0	440		
Grp Sat Flow(s),veh/h/ln	1774	1583	945	1863	0	1763		
Q Serve(g_s), s	2.8	6.0	7.5	7.8	0.0	6.9		
Cycle Q Clear(g_c), s	. 2.8	6.0	14.5	7.8	0.0	6.9		
Prop In Lane	1.00	1.00	1.00			0.26		
Lane Grp Cap(c), veh/h	344	307	529	1014	0	960		
V/C Ratio(X)	0.37	0.72	0.38	0.50	0.00	0.46		
Avail Cap(c_a), veh/h	1083	967	1045	2031	0	1923		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00		
Uniform Delay (d), s/veh	16.0	17.3	10.7	6.5	0.0	6.3		
Incr Delay (d2), s/veh	0.7	3.1	0.5	0.4	0.0	0.3		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(-26165%),veh/		2.8	2.0	4.1	0.0	3.4		
LnGrp Delay(d),s/veh	16.7	20.4	11.2	6.9	0.0	6.7		
LnGrp LOS	В	С	В	Α	Sen H	Α		and the second
Approach Vol, veh/h	346			709	440			
Approach Delay, s/veh	19.1			8.1	6.7			
Approach LOS	В			А	А			
Timer	1	2	3	4	5	6	7 8	私為 2607
Assigned Phs		2		4		6		
Phs Duration (G+Y+Rc), s		31.0		14.9		31.0		
Change Period (Y+Rc), s		6.0		6.0		6.0		
Max Green Setting (Gmax), s		50.0		28.0		50.0	Self States	
Max Q Clear Time (g_c+l1), s		16.5		8.0		8.9		
Green Ext Time (p_c), s		8.5		1.0		8.8		
ntersection Summary			1.1			S. C. States		in the second in
ICM 2010 Ctrl Delay			10.2					
HCM 2010 LOS			В					

	۶	-	\mathbf{i}	4	+	*	•	1	1	1	ţ	1	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ኘኘ	^	1	ሻ	≜ î⇒		ካካ	† †	1	ሻሻ	- ††	1	
Volume (veh/h)	358	318	92	201	262	131	240	1266	126	284	771	102	
Number	5	2	12	1	6	16	3	8	18	7	4	14	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1863	1863	1881	1881	1900	1863	1863	1863	1881	1881	1881	
Adj Flow Rate, veh/h	385	342	99	216	282	141	258	1361	135	305	829	110	
Adj No. of Lanes	2	2	1	1	2	0	2	2	1	2	2	1	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	2	2	2	1	1	1	2	2	2	1	1	1	
Cap, veh/h	459	549	404	346	343	167	344	1515	849	377	1559	884	
Arrive On Green	0.13	0.16	0.16	0.13	0.15	0.14	0.10	0.43	0.42	0.11	0.44	0.43	
Sat Flow, veh/h	3442	3539	1583	1792	2332	1136	3442	3539	1583	3476	3574	1599	A long to the second
Grp Volume(v), veh/h	385	342	99	216	214	209	258	1361	135	305	829	110	
Grp Sat Flow(s), veh/h/li	n1721	1770	1583	1792	1787	1681	1721	1770	1583	1738	1787	1599	
Q Serve(g_s), s	13.1	10.8	6.0	12.0	13.9	14.5	8.8	42.9	5.2	10.3	20.4	4.0	
Cycle Q Clear(g_c), s	13.1	10.8	6.0	12.0	13.9	14.5	8.8	42.9	5.2	10.3	20.4	4.0	
Prop In Lane	1.00		1.00	1.00		0.68	1.00		1.00	1.00		1.00	
Lane Grp Cap(c), veh/h	459	549	404	346	263	247	344	1515	849	377	1559	884	
V/C Ratio(X) J	0.84	0.62	0.24	0.62	0.82	0.84	0.75	0.90	0.16	0.81	0.53	0.12	
Avail Cap(c_a), veh/h	459	549	404	361	268	252	430	1515	849	377	1559	884	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/vel	ד 50.7	47.4	35.5	36.7	49.6	50.2	52.5	31.9	14.1	52.3	24.8	12.9	
Incr Delay (d2), s/veh	13.0	2.2	0.3	3.1	17.2	21.9	5.5	8.8	0.4	12.5	1.3	0.3	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(-26165%),vælð/lr	n 5.5	2.6	6.2	8.2	8.2	4.4	22.8	2.4	5.6	10.3	1.8	
LnGrp Delay(d),s/veh	63.7	49.6	35.8	39.8	66.8	72.1	58.1	40.7	14.5	64.8	26.1	13.2	
LnGrp LOS	E	D	D	D	E	E	E	D	В	E	С	В	
Approach Vol, veh/h		826			639			1754			1244		
Approach Delay, s/veh		54.5			59.4			41.3			34.5		
Approach LOS		D			E			D			С		
Timer	1	2	3	4	5	6	7	8				R. in Day	
Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc)		23.6	18.0	57.3	22.0	22.6	19.0	56.4					
Change Period (Y+Rc),		6.0	7.0	6.0	7.0	6.0	7.0	6.0					
Max Green Setting (Gm	a145,0\$	17.0	14.0	48.0	15.0	17.0	12.0	50.0					
Max Q Clear Time (g_c-	-1114),05	12.8	10.8	22.4	15.1	16.5	12.3	44.9					
Green Ext Time (p_c), s	0.1	1.8	0.3	18.0	0.0	0.1	0.0	4.5					
ntersection Summary	- Carlos		103142	SILL SIM									
HCM 2010 Ctrl Delay			44.4										
HCM 2010 LOS			D										

	۶	-	$\mathbf{\tilde{\mathbf{v}}}$	4	+	*	1	†	1	4	Ļ	4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	Column and	4		٦	ţ,		ή	朴臣		۲,	朴臣		
Volume (veh/h)	40	20	34	53	15	19	53	1695	77	18	1040	24	
Number	7	4	14	3	8	18	5	2	12	1	6	16	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	0.99		0.99	0.99		0.99	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1900	1881	1900	1792	1792	1900	1863	1863	1900	1863	1863	1900	
Adj Flow Rate, veh/h	43	22	37	57	16	20	57	1823	83	19	1118	26	
Adj No. of Lanes	0	1	0	1	1	0	1	2	0	1	2	0	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	1	1	1	6	6	6	2	2	2	2	2	2	
Cap, veh/h	87	38	47	158	64	81	461	2823	128	204	2895	67	
Arrive On Green	0.09	0.09	0.09	0.09	0.09	0.09	0.82	0.82	0.81	1.00	1.00	1.00	
Sat Flow, veh/h	497	427	526	1281	720	900	490	3448	156	235	3536	82	
Grp Volume(v), veh/h	102	0	0	57	0	36	57	929	977	19	560	584	
Grp Sat Flow(s), veh/h/lr	1449	0	0	1281	0	1619	490	1770	1835	235	1770	1848	
Q Serve(g_s), s	5.9	0.0	0.0	0.0	0.0	2.5	2.9	24.0	24.8	2.7	0.0	0.0	
Cycle Q Clear(g_c), s	8.4	0.0	0.0	6.3	0.0	2.5	2.9	24.0	24.8	27.6	0.0	0.0	
Prop In Lane	0.42		0.36	1.00		0.56	1.00		0.08	1.00		0.04	
Lane Grp Cap(c), veh/h		0	0	158	0	145	461	1449	1502	204	1449	1513	
V/C Ratio(X)	0.59	0.00	0.00	0.36	0.00	0.25	0.12	0.64	0.65	0.09	0.39	0.39	
Avail Cap(c_a), veh/h	278	0	0	246	0	256	461	1449	1502	204	1449	1513	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh		0.0	0.0	52.6	0.0	50.9	2.2	4.2	4.2	3.5	0.0	0.0	
Incr Delay (d2), s/veh	3.2	0.0	0.0	1.4	0.0	0.9	0.6	2.2	2.2	0.9	0.8	0.7	
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(-26165%			0.0	1.9	0.0	1.1	0.5	12.2	13.1	0.2	0.3	0.3	
LnGrp Delay(d),s/veh	56.9	0.0	0.0	54.0	0.0	51.7	2.8	6.3	6.4	4.4	0.8	0.7 A	
LnGrp LOS	E	400	pulle a	D	00	D	A	A	А	А	A 1163	А	
Approach Vol, veh/h		102			93			1963			0.8		
Approach Delay, s/veh		56.9			53.1			6.3			0.0 A		
Approach LOS		E			D			А			А		
Timer	1	2	3	4	5	6	7	8				S. Toler	
Assigned Phs		2		4		6		8					
Phs Duration (G+Y+Rc)		103.2		16.8		103.2		16.8					
Change Period (Y+Rc),		6.0		6.0		6.0		6.0					
Max Green Setting (Gm		89.0		19.0		89.0		19.0					
Max Q Clear Time (g_c-		26.8		10.4		29.6		8.3					
Green Ext Time (p_c), s		46.8		0.4		45.3		0.4					
Intersection Summary	Sieles	Sec. Starting			restoring.				1.396	E. C.			and the second
HCM 2010 Ctrl Delay			7.2										
HCM 2010 LOS			A										

Intersection

Int Delay, s/veh 31.6

Movement	EBL	EBT	EBR	WBL	WBT	WBR	- Andrews	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	5	2	17	51	0	29		35	1570	125	20	1014	6
Conflicting Peds, #/hr	0	0	8	0	0	2		0	0	0	0	0	5
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	F	Free	Free	Free	Free	Free	Free
RT Channelized	-		None			None		-	-	None	-	-	None
Storage Length	1.1.1.4	-		0				160		210	165		
Veh in Median Storage, #	-	0		-	0	(÷.)		-	0		•	0	
Grade, %		0	1	-	0	1.00			0			0	
Peak Hour Factor	93	93	93	93	93	93		93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	0	0	0		2	2	2	2	2	2
Mvmt Flow	5	2	18	55	0	31		38	1688	134	22	1090	6
Major/Minor	Minor2	NER	TOAL!	Minor1	0.2.25	- State	Ма	ijor1	1.27	11	Major2	- William	1
Conflicting Flow All	2066	2910	556	2362	2913	851	1	105	0	0	1690	0	0
Stage 1	1145	1145		1765	1765	-		-	-			•	
Stage 2	921	1765	1110.	597	1148			-		1.1.1	14 . F		
Critical Hdwy	7.54	6.54	6.94	7.5	6.5	6.9	4	4.14		-	4.14	-	
Critical Hdwy Stg 1	6.54	5.54	0 .	6.5	5.5			1.0		11.4	all and the second	•	
Critical Hdwy Stg 2	6.54	5.54		6.5	5.5			-			-		
Follow-up Hdwy	3.52	4.02	3.32	3.5	4	3.3	:	2.22			2.22	-	
Pot Cap-1 Maneuver	31	15	475	~ 19	16	308		628		-	374		-
Stage 1	212	272	-	89	. 139				-	-	1		- 14
Stage 2	291	136		461	276	-		-		-	-		-
Platoon blocked, %										-			-
Mov Cap-1 Maneuver	25	13	472	~ 15	14	306		628	-	-	372		
Mov Cap-2 Maneuver	25	13		~ 15	14	÷.,							
Stage 1	198	254		83	130	-		+		•			-
Stage 2	245	128		413	258	-		-					
Approach	EB			WB	AN AL	1010	18 - N.C.	NB	1. P.P.	Lange .	SB	No.	
HCM Control Delay, s	99.4			\$ 1096.5				0.2			0.3		
HCM LOS	F			F									
	1171		100			ODI	ODT	200	FT (54) 1253	S CANE	CONTRACTOR OF ST	CH 3104	1150.00
Minor Lane/Major Mvmt	NBL	NBT	NBH	EBLn1WBLn1V	and the second se	SBL	SBT S	SBR	and the	12110	The Sector Contraction	Sector Sec	And and
Capacity (veh/h)	628		-	62 15	306	372	-	-					
HCM Lane V/C Ratio	0.06	1.54	-	0.416 3.656				-					
HCM Control Delay (s)	11.1	•		99.8 1709.7	18.1	15.3		•					
HCM Lane LOS	В	-		FF	С	С	-	-					
HCM 95th %tile Q(veh)	0.2		•	1.6 7.7	0.3	0.2		•					
Notes	E. W. Hur	12012	- ARE		IN ALLOR	and and	1. (C. C. C.	all all			1	Ida a
-: Volume exceeds capacity	\$ De	lav exc	eeds 3	00s +: Com	putatio	n Not De	efined	*: All	major v	volume	in platoon		

	۶	-+	7	1	+	*	1	†	1	4	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	η	1≯		۲	4		٣	^ î>		ሻ	A⊅	
Volume (veh/h)	52	97	76	245	79	95	89	1269	246	104	708	24
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	C
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1881	1881	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	56	104	82	263	85	102	96	1365	265	112	761	26
Adj No. of Lanes	1	1	0	1	1	0	1	2	0	1	2	0
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	2	2	2	1	1	1	2	2	2	2	2	2
Cap, veh/h	274	126	99	315	167	200	413	1565	299	184	1873	64
Arrive On Green	0.04	0.13	0.12	0.13	0.21	0.21	0.04	0.53	0.52	0.05	0.54	0.53
Sat Flow, veh/h	1774	966	762	1792	780	936	1774	2965	567	1774	3492	119
Grp Volume(v), veh/h	56	0	186	263	0	187	96	806	824	112	386	401
Grp Sat Flow(s),veh/h/ln	1774	0	1728	1792	0	1716	1774	1770	1763	1774	1770	1842
Q Serve(g_s), s	3.2	0.0	12.6	15.0	0.0	11.6	3.0	47.4	49.7	3.4	15.5	15.5
Cycle Q Clear(g_c), s	3.2	0.0	12.6	15.0	0.0	11.6	3.0	47.4	49.7	3.4	15.5	15.5
Prop In Lane	1.00		0.44	1.00		0.55	1.00		0.32	1.00		0.06
Lane Grp Cap(c), veh/h	274	0	225	315	0	367	413	934	931	184	949	988
V/C Ratio(X)	0.20	0.00	0.83	0.84	0.00	0.51	0.23	0.86	0.89	0.61	0.41	0.41
Avail Cap(c_a), veh/h	274	0	230	315	0	372	413	934	931	184	949	988
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	42.5	0.0	51.1	38.4	0.0	41.9	12.8	24.6	25.3	26.0	16.5	16.5
Incr Delay (d2), s/veh	0.4	0.0	20.8	17.5	0.0	1.1	0.3	10.4	12.1	5.8	1.3	1.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(-26165%),veh/In		0.0	7.3	8.9	0.0	5.6	1.4	25.8	27.2	2.3	7.8	8.2
LnGrp Delay(d),s/veh	42.8	0.0	71.9	55.9	0.0	43.0	13.1	35.0	37.3	31.8	17.8	17.8
LnGrp LOS	D	5.43	Е	Е	214	D	В	С	D	С	В	В
Approach Vol, veh/h		242			450			1726			899	
Approach Delay, s/veh		65.1			50.5			34.9			19.5	
Approach LOS		E			D			С			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	11.0	68.3	20.0	20.7	10.0	69.3	10.0	30.7				
Change Period (Y+Rc), s	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0				
Max Green Setting (Gmax), s	5.0	62.0	14.0	15.0	4.0	63.0	4.0	25.0				
Max Q Clear Time (g_c+l1), s	5.4	51.7	17.0	14.6	5.0	17.5	5.2	13.6				
Green Ext Time (p_c), s	0.0	8.6	0.0	0.1	0.0	26.2	0.0	0.9		Seale N		6123063
Intersection Summary		and the state		A. Ing St.	The Carlot	i la la	and the second	15 - 5				N. Orth
HCM 2010 Ctrl Delay			35.1									
HCM 2010 LOS			D									

2016 PM Peak Hour Full Build

4.3

5/6/2015

Intersection

Movement	EBL	EBT	EBR	WBI		WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	25	320	70	4() 343	29	83	0	44	25	1	21
Conflicting Peds, #/hr	0	0	1	() 0	0	0	0	0	0	0	2
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	÷	•	None			None		-	None		-	None
Storage Length	175	-	-	17	5 -	-	0		+	0	-	-
Veh in Median Storage, #		0	-		- 0			0	-	-	0	-
Grade, %		0	-		- 0	-	-	0	-		0	
Peak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93
Heavy Vehicles, %	1	1	1		1	1	0	0	0	0	- 0	0
Mvmt Flow	27	344	75	43	369	31	89	0	47	27	1	23
Major/Minor	Major1	M. 3.	1	Majora	2	1205	Minor1	1 J		Minor2	The life	2 (72)
Conflicting Flow All	402	0	0	419		0	919	923	382	931	945	387
Stage 1	-	-	-			-	435	435	-	472	472	
Stage 2	-					1	484	488		459	473	
Critical Hdwy	4.11	-		4.1	-	-	7.1	6.5	6.2	7.1	6.5	6.2
Critical Hdwy Stg 1	-		-		-		6.1	5.5		6.1	5.5	-
Critical Hdwy Stg 2	-	-	-			-	6.1	5.5	-	6.1	5.5	
Follow-up Hdwy	2.209		-	2.209	-	-	3.5	4	3.3	3.5	• 4	3.3
Pot Cap-1 Maneuver	1162	-	-	1145	-		254	272	670	249	264	665
Stage 1		-	-			-	604	584	-	576	562	-
Stage 2	-	-	•			-	568	553		586	562	
Platoon blocked, %	-	-	-		-							
Mov Cap-1 Maneuver	1161	-	-	1145	-	-	233	255	670	220	248	663
Mov Cap-2 Maneuver	-						233	255	-	220	248	
Stage 1	-	-	-			-	590	570		562	540	
Stage 2				1			527	531		532	549	
Approach	EB	191	i de	WE			NB		18	SB	H.C.	1 21
HCM Control Delay, s	0.5			8.0			23.2			17.7		
HCM LOS							С			С		
Minor Lane/Major Mvmt	NBLn1	NBLn2	EBL	EBT EBF	WBL	WBT	WBR SBLn1	SBLn2	5.19	810,	10	11201
Capacity (veh/h)	233	670	1161		1145	-	- 220	616				
HCM Lane V/C Ratio		0.071	0.023		0.038		- 0.122					
HCM Control Delay (s)	29.7	10.8	8.2		8.3	-	- 23.6	11.1				
HCM Lane LOS	D	В	A				- C	В				
	_	_										

	⊁	~	1	1	Ŧ	1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR	Charles and	1222	A States		10
Lane Configurations	۲	1	ሻ	1	ţ,						
Volume (veh/h)	123	216	193	472	302	110					
Number	7	14	5	2	6	16					
Initial Q (Qb), veh	0	0	0	0	0	0					
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00					
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00					
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1845	1900					
Adj Flow Rate, veh/h	132	232	208	508	325	118					
Adj No. of Lanes	1	1	1	1	1	0					
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93					
Percent Heavy Veh, %	2	2	2	2	3	3					
Cap, veh/h	356	318	523	1018	706	256					
Arrive On Green	0.20	0.20	0.55	0.55	0.55	0.55					
Sat Flow, veh/h	1774	1583	943	1863	1293	469					
Grp Volume(v), veh/h	132	232	208	508	0	443	a local a local de				-
Grp Sat Flow(s), veh/h/ln	1774	1583	943	1863	0	1762					
				8.1	0.0	7.2					
Q Serve(g_s), s	3.0	6.5	8.1			7.2					
Cycle Q Clear(g_c), s	3.0	6.5	15.4	8.1	0.0						
Prop In Lane	1.00	1.00	1.00	1010	0	0.27					
Lane Grp Cap(c), veh/h	356	318	523	1018	0	963					
V/C Ratio(X)	0.37	0.73	0.40	0.50	0.00	0.46					
Avail Cap(c_a), veh/h	1047	935	1002	1963	0	1857					
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00					
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00					
Uniform Delay (d), s/veh	16.4	17.8	11.2	6.7	0.0	6.5					
incr Delay (d2), s/veh	0.6	3.2	0.5	0.4	0.0	0.3					
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0					
%ile BackOfQ(-26165%),veh/In		3.1	2.2	4.2	0.0	3.5					
LnGrp Delay(d),s/veh	17.0	21.0	11.7	7.1	0.0	6.9					
LnGrp LOS	В	С	В	A	alaint-	Α	1 Frailie	And a second	14-15-	A Street State	
Approach Vol, veh/h	364			716	443						
Approach Delay, s/veh	19.6			8.4	6.9						
Approach LOS	В			А	А						
Timer	1	2	3	4	5	6	7	8	and standard		13
Assigned Phs		2		4		6					
Phs Duration (G+Y+Rc), s		31.9		15.5		31.9					
Change Period (Y+Rc), s		6.0		6.0		6.0					
Max Green Setting (Gmax), s		50.0		28.0		50.0					
Max Q Clear Time (g_c+l1), s		17.4		8.5		9.2					
Green Ext Time (p_c), s		8.6		1.1		8.9					
ntersection Summary									and the second	ALL MARKE	1000
HCM 2010 Ctrl Delay	a second	CALL DATE	10.6	THE REAL	a change and	1 3 5					
HCM 2010 LOS			В								

	۶	-+	\mathbf{i}	4	+	*	1	†	1	1	Ļ	-	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ካካ	††	7	ሻ	≜ ⊅		ካካ	**	7	ኻኻ	*	1	
Volume (veh/h)	363	318	92	201	262	134	240	1309	126	290	847	111	
Number	5	2	12	1	6	16	3	8	18	7	4	14	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1863	1863	1881	1881	1900	1863	1863	1863	1881	1881	1881	
Adj Flow Rate, veh/h	390	342	99	216	282	144	258	1408	135	312	911	119	
Adj No. of Lanes	2	2	1	1	2	0	2	2	1	2	2	1	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	2	2	2	1	1	1	2	2	2	1	1	1	
Cap, veh/h	430	555	407	333	344	171	344	1568	860	348	1583	882	
Arrive On Green	0.13	0.16	0.16	0.12	0.15	0.14	0.10	0.44	0.43	0.10	0.44	0.43	
Sat Flow, veh/h	3442	3539	1583	1792	2315	1151	3442	3539	1583	3476	3574	1599	
Grp Volume(v), veh/h	390	342	99	216	216	210	258	1408	135	312	911	119	
Grp Sat Flow(s), veh/h/	In1721	1770	1583	1792	1787	1678	1721	1770	1583	1738	1787	1599	
Q Serve(g_s), s	13.4	10.8	5.9	12.1	14.0	14.6	8.8	44.1	5.1	10.7	22.9	4.3	
Cycle Q Clear(g_c), s	13.4	10.8	5.9	12.1	14.0	14.6	8.8	44.1	5.1	10.7	22.9	4.3	
Prop In Lane	1.00		1.00	1.00		0.69	1.00		1.00	1.00		1.00	
Lane Grp Cap(c), veh/		555	407	333	265	249	344	1568	860	348	1583	882	
V/C Ratio(X) V	0.91	0.62	0.24	0.65	0.81	0.84	0.75	0.90	0.16	0.90	0.58	0.13	
Avail Cap(c_a), veh/h	430	560	409	333	268	252	430	1568	860	348	1583	882	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/ve		47.2	35.3	37.4	49.5	50.1	52.5	30.9	13.7	53.4	25.0	13.0	
Incr Delay (d2), s/veh	22.5	2.0	0.3	4.4	17.1	21.8	5.5	8.5	0.4	24.8	1.5	0.3	
Initial Q Delay(d3),s/ve		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(-26165%			2.6	6.3	8.2	8.3	4.4	23.4	2.3	6.3	11.6	2.0	
LnGrp Delay(d),s/veh	74.4	49.2	35.6	41.7	66.6	71.9	58.1	39.4	14.1	78.2 E	26.5 C	13.4 B	
LnGrp LOS	E	D	D	D	E	E	E	D	В			D	
Approach Vol, veh/h		831			642			1801			1342		
Approach Delay, s/veh		59.4			60.0			40.2			37.4		
Approach LOS	Automatica (P	E		W. C. Lawrence	E			D	NO MONEAU	511-01-7-0-1-5	D		
Timer	1	2	3	4	5	6	7	8	時代に			A Philas	
Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc		23.8	18.0	58.2	21.0	22.8	18.0	58.2					
Change Period (Y+Rc)		6.0	7.0	6.0	7.0	6.0	7.0	6.0					
Max Green Setting (Gn		18.0	14.0	49.0	14.0	17.0	11.0	52.0					
Max Q Clear Time (g_c		12.8	10.8	24.9	15.4	16.6	12.7	46.1					
Green Ext Time (p_c),	s 0.0	2.2	0.3	18.1	0.0	0.2	0.0	5.3					
Intersection Summary		All Lang			1.1.1.4.	11.1	S. LITTIN	S. S. S. S. S.	(Levin)	3 11 22 11		Tracks	
HCM 2010 Ctrl Delay			45.6										
HCM 2010 LOS			D										

	۶	+	7	4	+	*	1	†	1	1	ŧ	1	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		۲	1⇒		۳	朴		۳	_ † ₽		
Volume (veh/h)	40	20	34	53	15	19	53	1747	77	18	1131	24	
Number	7	4	14	3	8	18	5	2	12	1	6	16	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	0.99		0.99	0.99		0.99	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1900	1881	1900	1792	1792	1900	1863	1863	1900	1863	1863	1900	
Adj Flow Rate, veh/h	43	22	37	57	16	20	57	1878	83	19	1216	26	
Adj No. of Lanes	0	1	0	1	1	0	1	2	0	1	2	0	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	1	1	1	6	6	6	2	2	2	2	2	2	
Cap, veh/h	87	38	47	158	64	81	425	2828	124	193	2901	62	
Arrive On Green	0.09	0.09	0.09	0.09	0.09	0.09	0.82	0.82	0.81	1.00	1.00	1.00	
Sat Flow, veh/h	497	427	526	1281	720	900	446	3454	151	223	3543	76	
Grp Volume(v), veh/h	102	0	0	57	0	36	57	955	1006	19	607	635	
Grp Sat Flow(s), veh/h/l		0	0	1281	0	1619	446	1770	1836	223	1770	1849	
Q Serve(g_s), s	5.9	0.0	0.0	0.0	0.0	2.5	3.2	25.5	26.4	3.1	0.0	0.0	
Cycle Q Clear(g_c), s	8.4	0.0	0.0	6.3	0.0	2.5	3.2	25.5	26.4	29.5	0.0	0.0	
Prop In Lane	0.42	0	0.36	1.00	0	0.56	1.00	1110	0.08	1.00	1110	0.04 1514	
Lane Grp Cap(c), veh/h		0	0	158	0	145	425	1449	1503	193	1449 0.42	0.42	
V/C Ratio(X) V	0.59	0.00	0.00	0.36	0.00	0.25	0.13	0.66	0.67	0.10 193	1449	1514	
Avail Cap(c_a), veh/h	278	0	0	246	0	256 1.00	425 1.00	1449 1.00	1503 1.00	2.00	2.00	2.00	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	0.00	52.6	0.00	50.9	2.3	4.3	4.4	4.0	0.0	0.0	
Uniform Delay (d), s/vel Incr Delay (d2), s/veh	3.2	0.0	0.0	1.4	0.0	0.9	0.7	2.4	2.4	1.0	0.9	0.9	
Initial Q Delay(d3),s/vel		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(-26165%			0.0	1.9	0.0	1.1	0.5	13.2	14.1	0.2	0.4	0.4	
LnGrp Delay(d),s/veh	56.9	0.0	0.0	54.0	0.0	51.7	2.9	6.7	6.8	5.0	0.9	0.9	
LnGrp LOS	E	0.0	0.0	D	010	D	A	A	A	A	Α	A	
Approach Vol, veh/h		102			93			2018		and the second second	1261		•
Approach Delay, s/veh		56.9			53.1			6.6			0.9		
Approach LOS		E			D			А			А		
Timer	1	2	3	4	5	6	7	8	And P				
Assigned Phs		2		4		6		8					
Phs Duration (G+Y+Rc)), S	103.2		16.8		103.2		16.8					
Change Period (Y+Rc),	S	6.0		6.0		6.0		6.0					
Max Green Setting (Gr		89.0		19.0		89.0		19.0					
Max Q Clear Time (g_c		28.4		10.4		31.5		8.3					
Green Ext Time (p_c), s	3	48.6		0.4		46.6		0.4	ON SALE	14110.5			
Intersection Summary	國際原於		ALE DA									A Start	
HCM 2010 Ctrl Delay			7.3										
HCM 2010 LOS			А										

Intersection

Movement	EBL	EBT	EBR	WB	WBT	WBR	N	3L N	BT	NBR	SBL	SBT	SBR
Vol, veh/h	0	0	10) 0	37	1944	0 16	11	114	0	1068	6
Conflicting Peds, #/hr	0	0	8) 0	2		0	0	0	0	0	5
Sign Control	Stop	Stop	Stop	Sto	Stop	Stop	Fr	ee Fr	ee	Free	Free	Free	Free
RT Channelized		-	None			None		-		None		-	None
Storage Length		-	0			0		-	-	210	-	-	-
Veh in Median Storage, #	÷	0			- 0				0	-		0	-
Grade, %		0	-		- 0			-	0	-		0	-
Peak Hour Factor	93	93	93	9	3 93	93		93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	1) 0	0		2	2	2	2	2	2
Mvmt Flow	0	0	11) 0	40		0 17	32	123	0	1148	6
Major/Minor	Minor2			Minor			Majo	or1		1	Major2	W.T.C.	1
Conflicting Flow All	2028	2894	585	231	6 2897	873	11	63	0	0	1734	0	0
Stage 1	1160	1160	-	1734	1734			-	-	-	-	-	
Stage 2	868	1734	-	58	2 1163	-				-	-		
Critical Hdwy	7.54	6.54	6.94	7.	6.5	6.9	4.	14	-	-	4.14	4	
Critical Hdwy Stg 1	6.54	5.54	-	6.	5 5.5				-	-			-
Critical Hdwy Stg 2	6.54	5.54	-	6.	5 5.5			-	-				
Follow-up Hdwy	3.52	4.02	3.32	3.	5 4	3.3	2.	22	-		2.22		
Pot Cap-1 Maneuver	34	16	454	2	16	297	5	96	-	-	359	4	
Stage 1	208	268	-	9:	3 144	-			-	-	-	-	-
Stage 2	314	141		47	271	-		•	-				
Platoon blocked, %									-	-			
Mov Cap-1 Maneuver	29	16	451	2		295	5	96	-		358	-	-
Mov Cap-2 Maneuver	29	16	-	20				+	×	-		+	· ` -
Stage 1	207	266		93		-		÷	-	-		•	
Stage 2	271	141	•	460) 269			•	-	-		7	1
Approach	EB	122	an pel y com	WE	}	her.	1	₩B		7. 31	SB	1.1.1	A good
HCM Control Delay, s	13.2			19.				0			0		
HCM LOS	В			(;								
Minor Lane/Major Mvmt	NBL	NBT	NBRI	EBLn1WBLn	SBL	SBT	SBR		016			E., (1)).	C. (Mart)
Capacity (veh/h)	596	-	-	451 29		-	-						
HCM Lane V/C Ratio	-		-	0.024 0.13		-	4						
HCM Control Delay (s)	0	-		13.2 19.									
HCM Lane LOS	Ă			В (

	۶	-+	7	4	+	*	1	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۳	ţ,		٦	eî.		۳	∱ î≽		۳	†₽	
Volume (veh/h)	52	99	78	266	82	113	92	1289	268	114	719	24
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1881	1881	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	56	106	84	286	88	122	99	1386	288	123	773	26
Adj No. of Lanes	1	1	0	1	1	0	1	2	0	1	2	0
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	2	2	2	1	1	1	2	2	2	2	2	2
Cap, veh/h	269	128	101	329	158	219	399	1516	309	301	1838	62
Arrive On Green	0.05	0.13	0.12	0.13	0.22	0.21	0.08	1.00	1.00	0.05	0.53	0.52
Sat Flow, veh/h	1774	964	764	1792	715	991	1774	2929	598	1774	3494	118
Grp Volume(v), veh/h	56	0	190	286	0	210	99	827	847	123	391	408
Grp Sat Flow(s),veh/h/ln	1774	0	1728	1792	0	1706	1774	1770	1757	1774	1770	1842
Q Serve(g_s), s	3.2	0.0	12.9	16.0	0.0	13.2	3.2	0.0	0.0	3.9	16.2	16.2
Cycle Q Clear(g_c), s	3.2	0.0	12.9	16.0	0.0	13.2	3.2	0.0	0.0	3.9	16.2	16.2
Prop In Lane	1.00		0.44	1.00		0.58	1.00		0.34	1.00		0.06
Lane Grp Cap(c), veh/h	269	0	229	329	0	376	399	916	910	301	931	969
V/C Ratio(X)	0.21	0.00	0.83	0.87	0.00	0.56	0.25	0.90	0.93	0.41	0.42	0.42
Avail Cap(c_a), veh/h	293	0	230	329	0	376	399	916	910	301	931	969
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	41.9	0.0	51.0	38.2	0.0	41.8	12.9	0.0	0.0	12.1	17.3	17.3
Incr Delay (d2), s/veh	0.4	0.0	21.8	21.3	0.0	1.8	0.3	13.9	17.1	0.9	1.4	1.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(-26165%),veh/Ir	1.6	0.0	7.5	3.4	0.0	6.4	1.6	3.5	4.3	1.9	8.2	8.5
LnGrp Delay(d),s/veh	42.3	0.0	72.8	59.5	0.0	43.7	13.2	13.9	17.1	12.9	18.7	18.7
LnGrp LOS	D		Е	E		D	В	В	В	В	В	В
Approach Vol, veh/h		246			496			1773			922	
Approach Delay, s/veh		65.8			52.8			15.4			17.9	
Approach LOS		E			D			В			В	
Timer	1	2	3	4	5	6	7	8			No. AND AND	
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	11.0	67.1	21.0	20.9	10.0	68.1	10.4	31.5				
Change Period (Y+Rc), s	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0				
Max Green Setting (Gmax), s	5.0	61.0	15.0	15.0	4.0	62.0	6.0	24.0				
Max Q Clear Time (g_c+l1), s	5.9	2.0	18.0	14.9	5.2	18.2	5.2	15.2				
Green Ext Time (p_c), s	0.0	31.3	0.0	0.0	0.0	26.7	0.0	0.8				
Intersection Summary						Section 1						
HCM 2010 Ctrl Delay			25.1									
HCM 2010 LOS			С									

	۶	-+	7	4	+	*	1	1	1	L.	4	Ŧ
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT
Lane Configurations	1	f		ή	Þ		Ā	ተኩ			3	↑ ⊅
Volume (veh/h)	5	2	8	124	1	20	35	1717	49	3	33	1042
Number	7	4	14	3	8	18	5	2	12		1	6
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0		0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1900	1863	1863	1900		1863	1863
Adj Flow Rate, veh/h	5	2	9	133	1	22	38	1846	53		35	1120
Adj No. of Lanes	1	1	0	1	1	0	1	2	0		1	2
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93		0.93	0.93
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2		2	2
Cap, veh/h	203	35	155	215	8	178	452	2753	79		188	2842
Arrive On Green	0.12	0.12	0.12	0.12	0.12	0.12	0.78	0.78	0.78		1.00	1.00
Sat Flow, veh/h	1383	296	1332	1398	69	1524	500	3514	100	1.1.1	237	3629
Grp Volume(v), veh/h	5	0	11	133	0	23	38	926	973		35	546
Grp Sat Flow(s), veh/h/ln	1383	0	1628	1398	0	1594	500	1770	1845		237	1770
Q Serve(g_s), s	0.4	0.0	0.7	11.2	0.0	1.6	2.1	28.5	29.0		6.8	0.0
Cycle Q Clear(g_c), s	1.9	0.0	0.7	11.9	0.0	1.6	2.1	28.5	29.0		35.8	0.0
Prop In Lane	1.00	0.0	0.82	1.00		0.96	1.00		0.05		1.00	
Lane Grp Cap(c), veh/h	203	0	190	215	0	186	452	1386	1445		188	1386
V/C Ratio(X)	0.02	0.00	0.06	0.62	0.00	0.12	0.08	0.67	0.67		0.19	0.39
Avail Cap(c_a), veh/h	226	0	217	238	0	212	452	1386	1445		188	1386
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		2.00	2.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00		1.00	1.00
Uniform Delay (d), s/veh	48.4	0.0	47.1	52.4	0.0	47.5	3.0	5.9	6.0		5.5	0.0
Incr Delay (d2), s/veh	0.0	0.0	0.1	4.1	0.0	0.3	0.4	2.6	2.5		2.2	0.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
%ile BackOfQ(-26165%),veh/lr		0.0	0.3	4.6	0.0	0.7	0.3	14.6	15.6		0.5	0.3
LnGrp Delay(d),s/veh	48.4	0.0	47.3	56.6	0.0	47.8	3.4	8.5	8.5		7.7	0.8
LnGrp LOS	D	0.0	D	E	010	D	A	A	А		А	A
Approach Vol, veh/h		16			156			1937				1156
Approach Delay, s/veh		47.6			55.3			8.4				1.0
Approach LOS		17.0 D			E			A				A
A DESCRIPTION OF A DESC		and the second second second second	0	1	and the second state of th	6	7	8	Mar Mark			HUSTREE
Timer Assigned Phs		2	3	4	5	6	and the first	8				AND AND AND A
Phs Duration (G+Y+Rc), s		100.0		20.0		100.0		20.0				
Change Period (Y+Rc), s		6.0		6.0		6.0		6.0				
Max Green Setting (Gmax), s		92.0		16.0		92.0		16.0				
Max Q Clear Time (g_c+11), s		92.0 31.0		3.9		37.8		13.9				
Green Ext Time (p_c), s		45.9		0.4		42.0		0.1				
		40.9	and the second	0.4		-τ ∠ .υ		0.1			William Report	A COLORADOR
Intersection Summary	Statistic		8.2	Con Stat	Carlo Ballin	malalifier		NEADOCTOR OF	States 1	A REAL PROPERTY	and the set	the property
HCM 2010 Ctrl Delay			0.2									

HCM 2010 LOS

User approved pedestrian interval to be less than phase max green.

А

	1
Movement	SBR
LareConfigurations	
Volume (veh/h)	1
Number	16
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Adj Sat Flow, veh/h/ln	1900
Adj Flow Rate, veh/h	1
Adj No. of Lanes	0
Peak Hour Factor	0.93
Percent Heavy Veh, %	2
Cap, veh/h	3
Arrive On Green	1.00
Sat Flow, veh/h	3
Grp Volume(v), veh/h	575
Grp Sat Flow(s),veh/h/ln	1862
Q Serve(g_s), s	0.0
Cycle Q Clear(g_c), s	0.0 0.00
Prop In Lane	1459
Lane Grp Cap(c), veh/h V/C Ratio(X)	0.39
Avail Cap(c_a), veh/h	1459
HCM Platoon Ratio	2.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	0.0
Incr Delay (d2), s/veh	0.0
Initial Q Delay(d3),s/veh	0.0
%ile BackOfQ(-26165%),veh/l	
LnGrp Delay(d),s/veh	0.8
LnGrp LOS	A
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
	VILLA STREET SAVE
Timer	S

APPENDIX F:

Capacity Analysis Reports Year 2036

2036 AM Peak Hour No Build

5/1/2015

Int Delay, s/veh	1.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Vol, veh/h	10	314	46	14	259	11	29	1	18	8	2	13
Conflicting Peds, #/hr	0	0	1	0	0	0	0	0	0	0	0	2
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized			None			None	-	-	None		-	None
Storage Length	175		-	175	-	- 15	125	-		125		
Veh in Median Storage, #	-	0	-	-	0	-	-	0			0	
Grade, %				4	0	111-	-	0	-	-	0	- 13
Peak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93
Heavy Vehicles, %	1	1	1	1	1	1	0	0	0	0	0	(
Mvmt Flow	11	338	49	15	278	12	31	1	19	9	2	14
Major/Minor	Major1			Major2	C. V.		Minor1			Minor2	NEXT	
Conflicting Flow All	292	0	0	387	30	0	709	706	362	711	726	287
Stage 1	292		-	00(γi	U	384	384		317	317	201
Stage 2	CONTRACTOR OF						325	322		394	409	N.L.R.
Critical Hdwy	4.11			4.11			7.1	6.5	6.2	7.1	6.5	6.2
Critical Hdwy Stg 1	4.11	-		4.11			6.1	5.5	-	6.1	5.5	0.2
Critical Hdwy Stg 2		-			-		6.1	5.5	-	6.1	5.5	
Follow-up Hdwy	2.209			2.209	-	11502	3.5	4	3.3	3.5	4	3.3
Pot Cap-1 Maneuver	1275		-	1177	-		352	363	687	351	354	757
Stage 1	-	-	-			-	643	615	-	698	658	
Stage 2		-					692	655		635	600	
Platoon blocked, %						1022	- UCL	000		000	000	
Mov Cap-1 Maneuver	1274		-	1177			338	355	687	334	346	755
Nov Cap-2 Maneuver	-	1		-	-		338	355	-	334	346	
Stage 1		-		-	-		637	610		691	649	
Stage 2						•	668	646	-	611	595	
Approach	EB	2.30.123	124753	WB	Such La	1514 (2)	NB	1.15	50022	SB	1.12	14:15
HCM Control Delay, s	0.2	111111	101221	0.4	All a	Costs and 125	14.3	Contraction of the second		12.6	142125	
HCM LOS	0.2			0.4		17.5	B			B		
Minor Lane/Major Mvmt	NBLn1	NBLn2	EBL	EBT EBR	WBL	WBT	WBR SBLn1	SBLn2				
Capacity (veh/h)	338	655	1274		1177	-	- 334	652				
ICM Lane V/C Ratio	0.092		0.008		0.013	-	- 0.026					
HCM Control Delay (s)	16.7	10.7	7.9		8.1		- 16.1	10.7				
ICM Lane LOS	C	B	A		A		- C	В				
ICM 95th %tile Q(veh)	0.3	0.1	0		0		- 0.1	0.1				

	۶	¥	1	1	Ļ	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	٦	1	٦	1	4Î		
Volume (veh/h)	46	283	274	506	699	185	
Number	7	14	5	2	6	16	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1845	1900	
Adj Flow Rate, veh/h	49	304	295	544	752	199	
Adj No. of Lanes	1	1	1	1	1	0	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	2	2	2	2	3	3	
Cap, veh/h	315	281	275	1283	969	256	
Arrive On Green	0.18	0.18	0.69	0.69	0.69	0.69	
Sat Flow, veh/h	1774	1583	588	1863	1407	372	
Grp Volume(v), veh/h	49	304	295	544	0	951	
Grp Sat Flow(s), veh/h/ln	1774	1583	588	1863	0	1779	
Q Serve(g_s), s	2.1	16.0	29.8	11.6	0.0	32.2	
Cycle Q Clear(g_c), s	2.1	16.0	62.0	11.6	0.0	32.2	
Prop In Lane	1.00	1.00	1.00			0.21	
ane Grp Cap(c), veh/h	315	281	275	1283	0	1226	
V/C Ratio(X) △	0.16	1.08	1.07	0.42	0.00	0.78	
Avail Cap(c_a), veh/h	315	281	275	1283	0	1226	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Jpstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	
Jniform Delay (d), s/veh	31.3	37.0	34.4	6.2	0.0	9.4	
ncr Delay (d2), s/veh	0.2	76.6	75.2	1.0	0.0	4.9	
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(-26165%), veh.	/In 1.1	12.9	12.5	6.3	0.0	17.2	
_nGrp Delay(d),s/veh	31.5	113.6	109.6	7.2	0.0	14.2	
nGrp LOS	С	F	F	Α	See 11 to	В	and the second second second second second
Approach Vol, veh/h	353			839	951		
Approach Delay, s/veh	102.2			43.2	14.2		
Approach LOS	F			D	В		
imer	1	2	3	4	5	6	7 8
ssigned Phs		2		4		6	
Phs Duration (G+Y+Rc), s		68.0		22.0		68.0	
Change Period (Y+Rc), s		6.0		6.0		6.0	
Max Green Setting (Gmax), s		62.0		16.0		62.0	
Nax Q Clear Time (g_c+l1), s	6	64.0		18.0		34.2	
areen Ext Time (p_c), s		0.0		0.0		17.3	
ntersection Summary			1.11 20		200 1918		
ICM 2010 Ctrl Delay			40.1			a states	
ICM 2010 LOS			D				

	۶	-	7	*	-	*	•	1	1	1	Ŧ	1	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ኘካ	<u>†</u> †	1	ή	≜ î≽		ካካ	† †	1	ሻሻ	† †	7	
Volume (veh/h)	164	318	122	137	293	62	278	868	130	358	1701	228	
Number	5	2	12	1	6	16	3	8	18	7	4	14	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1863	1863	1881	1881	1900	1863	1863	1863	1881	1881	1881	
Adj Flow Rate, veh/h	176	342	131	147	315	67	299	933	140	385	1829	245	
Adj No. of Lanes	2	2	1	1	2	0	2	2	1	2	2	1	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	2	2	2	1	1	1	2	2	2	1	1	1	
Cap, veh/h	241	587	389	268	488	102	275	1610	799	757	1659	822	
Arrive On Green	0.07	0.17	0.17	0.07	0.17	0.16	0.11	0.61	0.59	0.12	0.62	0.60	
Sat Flow, veh/h	3442	3539	1583	1792	2942	618	3442	3539	1583	3476	3574	1599	
Grp Volume(v), veh/h	176	342	131	147	190	192	299	933	140	385	1829	245	
Grp Sat Flow(s), veh/h/l		1770	1583	1792	1787	1772	1721	1770	1583	1738	1787	1599	
Q Serve(g_s), s	5.0	8.9	6.8	6.8	9.9	10.2	8.0	16.0	3.6	5.7	46.4	6.8	
Cycle Q Clear(g_c), s	5.0	8.9	6.8	6.8	9.9	10.2	8.0	16.0	3.6	5.7	46.4	6.8	
Prop In Lane	1.00		1.00	1.00		0.35	1.00		1.00	1.00		1.00	
Lane Grp Cap(c), veh/h		587	389	268	296	294	275	1610	799	757	1659	822	
V/C Ratio(X)	0.73	0.58	0.34	0.55	0.64	0.65	1.09	0.58	0.18	0.51	1.10	0.30	
Avail Cap(c_a), veh/h	241	849	507	268	429	425	275	1610	799	794	1659	822	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.33	1.33	1.33	1.33	1.33	1.33	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/ve		38.5	31.0	32.3	38.9	39.2	44.7	13.9	9.7	13.3	19.1	9.8	
ncr Delay (d2), s/veh	10.7	0.9	0.5	2.3	2.3	2.5	79.1	1.5	0.5	0.5	55.7	0.9	
Initial Q Delay(d3),s/vel		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(-26165%			3.0	3.5	5.1	5.2	6.8	8.1	1.7	2.7	35.3	3.2	
_nGrp Delay(d),s/veh	56.3	39.4	31.5	34.6	41.2	41.7	123.8	15.5	10.2	13.8	74.9	10.7	
LnGrp LOS	E	D	С	С	D	D	F	В	В	В	F	В	
Approach Vol, veh/h		649			529			1372			2459		
Approach Delay, s/veh		42.4			39.6			38.5			58.9		
Approach LOS		D			D			D			E		
limer	1	2	3	4	5	6	7	8					
Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc), 13.0	21.6	14.0	51.4	13.0	21.6	14.9	50.5					
Change Period (Y+Rc),		6.0	7.0	6.0	7.0	6.0	7.0	6.0					
Max Green Setting (Gr		23.0	7.0	38.0	6.0	23.0	9.0	36.0					
Max Q Clear Time (g_c		10.9	10.0	48.4	7.0	12.2	7.7	18.0					
Green Ext Time (p_c),		3.6	0.0	0.0	0.0	3.4	0.2	16.1					
ntersection Summary											and at	e alla	
HCM 2010 Ctrl Delay			49.1										
HCM 2010 LOS			D										

	≯	-	7	4	+	*	*	†	1	4	Ŧ	-	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		٦	ħ		ή	*		٣	1÷		
Volume (veh/h)	19	8	55	35	1	18	20	1107	73	57	2152	28	
Number	7	4	14	3	8	18	5	2	12	1	6	16	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	0.99		0.99	0.99		0.99	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1900	1881	1900	1792	1792	1900	1863	1863	1900	1863	1863	1900	
Adj Flow Rate, veh/h	20	9	59	38	1	19	22	1190	78	61	2314	30	
Adj No. of Lanes	0	1	0	1	1	0	1	2	0	1	2	0	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	1	1	1	6	6	6	2	2	170	2 425	2 2903	2 38	
Cap, veh/h	64	22	84	172	6 0.08	113 0.08	196	2736	179 1.00	425	1.00	1.00	
Arrive On Green	0.08 248	0.08 275	0.08	0.08	0.08	1437	1.00 153	3372	221	435	3578	46	
Sat Flow, veh/h	<u>240</u> 88			38	0	20	22	624	644	61	1142	1202	
Grp Volume(v), veh/h Grp Sat Flow(s),veh/h/l		0 0	0	1269	0	1513	153	1770	1823	435	1770	1855	
Q Serve(g_s), s	3.0	0.0	0.0	0.0	0.0	1.2	0.0	0.0	0.0	0.0	0.0	0.0	
Cycle Q Clear(g_c), s	5.3	0.0	0.0	2.8	0.0	1.2	0.0	0.0	0.0	0.0	0.0	0.0	
Prop In Lane	0.23	0.0	0.67	1.00	0.0	0.95	1.00	0.0	0.12	1.00	010	0.02	
Lane Grp Cap(c), veh/h		0	0	172	0	119	196	1436	1479	425	1436	1505	
V/C Ratio(X)	0.52	0.00	0.00	0.22	0.00	0.17	0.11	0.43	0.44	0.14	0.80	0.80	
Avail Cap(c_a), veh/h	342	0	0	313	0	287	196	1436	1479	425	1436	1505	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.33	1.33	1.33	1.33	1.33	1.33	
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/vel	h44.9	0.0	0.0	43.8	0.0	43.0	0.0	0.0	0.0	0.0	0.0	0.0	
Incr Delay (d2), s/veh	2.5	0.0	0.0	0.6	0.0	0.7	1.2	1.0	0.9	0.7	4.6	4.5	
Initial Q Delay(d3),s/vel	n 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(-26165%			0.0	1.0	0.0	0.5	0.1	0.4	0.4	0.1	1.8	1.9	
LnGrp Delay(d),s/veh	47.3	0.0	0.0	44.4	0.0	43.7	1.2	1.0	0.9	0.7	4.6	4.5	
LnGrp LOS	D	1313	A. fred	D	1.13	D	Α	Α	Α	Α	Α	Α	
Approach Vol, veh/h		88			58			1290			2405		
Approach Delay, s/veh		47.3			44.1			1.0			4.5		
Approach LOS		D			D			A			A		
Timer	1	2	3	4	5	6	7	8			Kan I		
Assigned Phs		2		4		6		8					
Phs Duration (G+Y+Rc)	, .	86.1		13.9		86.1		13.9					
Change Period (Y+Rc),		6.0		6.0		6.0		6.0					
Max Green Setting (Gm		69.0		19.0		69.0		19.0					
Max Q Clear Time (g_c		2.0		7.3		2.0		4.8					
Green Ext Time (p_c), s	S	60.4		0.3	11.2.2	60.4	12152	0.3		200033		201.3	
Intersection Summary			S. The		a la la	23635			1.5.1.1				
HCM 2010 Ctrl Delay			4.9										
HCM 2010 LOS			А										

0.2

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	0	0	10	0	0	19	0	1097	40	0	2126	. 1
Conflicting Peds, #/hr	0	0	8	0	0	2	0	0	0	0	0	5
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-		None
Storage Length		-	0	-	1	0	-		210			-
Veh in Median Storage, #		0	-	-	0			0	-	÷	0	-
Grade, %	-	0		-	0		-	0	-	-	0	-
Peak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	0	0	0	.2	2	. 2	2	2	2
Mvmt Flow	0	0	11	0	0	20	0	1180	43	0	2286	1

Major/Minor	Minor2	102-	19.10	Minor1	The State	FA PELY	Major1		Same Cill	Major2	1	24
Conflicting Flow All	2887	3477	1152	2333	3477	597	2295	0	0	1182	0	0
Stage 1	2295	2295	-	1182	1182	-		-	-		-	-
Stage 2	592	1182	-	1151	2295			-	-	-		-
Critical Hdwy	7.54	6.54	6.94	7.5	6.5	6.9	4.14		-	4.14	-	-
Critical Hdwy Stg 1	6.54	5.54	1.15	6.5	5.5				-	-		-
Critical Hdwy Stg 2	6.54	5.54	-	6.5	5.5	-	÷.		-	-		-
Follow-up Hdwy	3.52	4.02	3.32	3.5	4	3.3	2.22	-	-	2.22		-
Pot Cap-1 Maneuver	7	6	191	20	7	451	216	-	-	587		-
Stage 1	40	73		205	266				-			-
Stage 2	460	262	-	214	75	-	-		-	-		-
Platoon blocked, %								-			-	-
Mov Cap-1 Maneuver	7	6	190	19	7	448	216	-	-	585	-	-
Mov Cap-2 Maneuver	7	6		19	7	+						-
Stage 1	40	73		205	266		-	-	-		- 1 3 -	-
Stage 2	437	262	11.17	202	75	-			-	-		•
Approach	EB	e e ph		WB	1223	(17 m)	NB		Elle I	SB		
HCM Control Delay, s	25.1			13.4			0			0		
HCM LOS	D			В								

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	216		-	190	448	585	-	- ÷	
HCM Lane V/C Ratio	-	-		0.057	0.046	-	-	-	
HCM Control Delay (s)	0		-	25.1	13.4	0	-	-	
HCM Lane LOS	A	-	1	D	В	Α	-	-	
HCM 95th %tile Q(veh)	0	-	-	0.2	0.1	0	-	-	

	۶	-	7	4	+	*	1	†	1	4	ŧ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ኻ	î,		ሻ	4Î		ሻ	1		ኻ	† ₽	
Volume (veh/h)	47	99	138	260	45	72	51	920	145	112	1688	79
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/in	1863	1863	1900	1881	1881	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	51	106	148	280	48	77	55	989	156	120	1815	85
Adj No. of Lanes	1	1	0	1	1	0	1	2	0	1	2	0
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	2	2	2	1	1	1	2	2	2	2	2	2
Cap, veh/h	302	99	138	233	122	195	145	1562	246	338	1821	85
Arrive On Green	0.04	0.14	0.13	0.09	0.19	0.18	0.05	0.68	0.66	0.08	0.70	0.69
Sat Flow, veh/h	1774	705	984	1792	652	1045	1774	3064	483	1774	3444	160
Grp Volume(v), veh/h	51	0	254	280	0	125	55	571	574	120	926	974
Grp Sat Flow(s),veh/h/In	1774	0	1689	1792	0	1697	1774	1770	1778	1774	1770	1834
Q Serve(g_s), s	2.4	0.0	14.0	9.0	0.0	6.5	1.4	18.2	18.4	3.1	51.1	52.9
Cycle Q Clear(g_c), s	2.4	0.0	14.0	9.0	0.0	6.5	1.4	18.2	18.4	3.1	51.1	52.9
Prop In Lane	1.00		0.58	1.00		0.62	1.00		0.27	1.00		0.09
Lane Grp Cap(c), veh/h	302	0	236	233	0	317	145	902	906	338	936	970
V/C Ratio(X) A	0.17	0.00	1.07	1.20	0.00	0.39	0.38	0.63	0.63	0.35	0.99	1.00
Avail Cap(c_a), veh/h	314	0	236	233	0	317	214	902	906	391	936	970
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.33	1.33	1.33	1.33	1.33	1.33
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	34.3	0.0	43.3	36.1	0.0	36.0	23.1	10.8	11.0	11.9	14.6	14.9
Incr Delay (d2), s/veh	0.3	0.0	79.6	123.9	0.0	0.8	1.6	3.4	3.4	0.6	27.1	29.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(-26165%),veh/In	1.2	0.0	11.7	10.0	0.0	3.1	0.8	9.5	9.6	1.6	31.4	33.9
LnGrp Delay(d),s/veh	34.6	0.0	122.9	159.9	0.0	36.8	24.7	14.2	14.3	12.5	41.7	44.8
LnGrp LOS	С		F	F		D	С	В	В	В	D	F
Approach Vol, veh/h		305			405			1200			2020	
Approach Delay, s/veh		108.1			121.9			14.7			41.5	
Approach LOS		F			F			В			D	
Timer	1	2	3	4	5	6	7	8				anger på
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	11.0	56.0	14.0	19.0	9.1	57.9	9.3	23.7				
Change Period (Y+Rc), s	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0				
Max Green Setting (Gmax), s	8.0	47.0	8.0	13.0	7.0	48.0	4.0	17.0				
Max Q Clear Time (g_c+l1), s	5.1	20.4	11.0	16.0	3.4	54.9	4.4	8.5				
Green Ext Time (p_c), s	0.1	22.7	0.0	0.0	0.0	0.0	0.0	0.8				
Intersection Summary												
HCM 2010 Ctrl Delay	The A	Pink.	46.8	120.64	1.7.512							
HCM 2010 LOS			D									

	٠	-+	*	1	+	*	1	Ť	1	L.	1	Ļ
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SB1
Lane Configurations	۲	4		٦	1+) A	∱ }			N.	- † †
Volume (veh/h)	3	1	8	59	0	8	16	1140	36	6	26	2104
Number	7	4	14	3	8	18	5	2	12		1	6
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0		0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1900	1863	1863	1900		1863	1863
Adj Flow Rate, veh/h	3	1	9	63	0	9	17	1226	39		28	2262
Adj No. of Lanes	1	1	0	1	1	0	1	2	0		1	2
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93		0.93	0.93
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2		2	2
Cap, veh/h	155	10	94	154	0	103	207	2854	91		425	2960
Arrive On Green	0.06	0.06	0.06	0.06	0.00	0.06	1.00	1.00	0.82		1.00	1.00
Sat Flow, veh/h	1400	161	1447	1399	0	1583	165	3501	111		436	3630
Grp Volume(v), veh/h	3	0	10	63	0	9	17	619	646		28	1102
Grp Sat Flow(s),veh/h/ln	1400	0	1607	1399	0	1583	165	1770	1843		436	1770
Q Serve(g_s), s	0.2	0.0	0.6	4.4	0.0	0.5	0.0	0.0	0.7		0.1	0.0
Cycle Q Clear(g_c), s	0.7	0.0	0.6	5.0	0.0	0.5	0.0	0.0	0.7		0.7	0.0
Prop In Lane	1.00		0.90	1.00		1.00	1.00		0.06		1.00	
Lane Grp Cap(c), veh/h	155	0	104	154	0	103	207	1443	1503		425	1443
V/C Ratio(X)	0.02	0.00	0.10	0.41	0.00	0.09	0.08	0.43	0.43		0.07	0.76
Avail Cap(c_a), veh/h	289	0	257	288	0	253	207	1443	1503		425	1443
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.33	1.33	1.00		1.33	1.33
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00		1.00	1.00
Uniform Delay (d), s/veh	44.3	0.0	44.0	46.4	0.0	44.0	0.0	0.0	0.1		0.0	0.0
Incr Delay (d2), s/veh	0.0	0.0	0.4	1.7	0.0	0.4	0.8	0.9	0.9		0.3	3.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
%ile BackOfQ(-26165%),veh/ln	0.1	0.0	0.3	1.8	0.0	0.2	0.0	0.4	0.6		0.0	1.6
LnGrp Delay(d),s/veh	44.4	0.0	44.4	48.1	0.0	44.3	0.8	0.9	1.0		0.3	3.9
LnGrp LOS	D		D	D		D	Α	А	Α		Α	A
Approach Vol, veh/h		13			72			1282				2291
Approach Delay, s/veh		44.4			47.6			1.0				3.8
Approach LOS		D			D			А				A
Timer	1	2	3	4	5	6	7	8				P. State
Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		87.5		12.5		87.5		12.5				
Change Period (Y+Rc), s		6.0		6.0		6.0		6.0				
Max Green Setting (Gmax), s		72.0		16.0		72.0		16.0				
Max Q Clear Time (g_c+l1), s		2.7		2.7		2.7		7.0				
Green Ext Time (p_c), s		60.0		0.2		60.0		0.1				
Intersection Summary	76.3											REAL S
HCM 2010 Ctrl Delay			3.8									
HCM 2010 LOS			А									
Notes			制度的	12.253		State F						Store It
Llear approved ignoring LL Turni		omont										

1

Movement	SBR
LareConfigurations	
Volume (veh/h)	1
Number	16
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Adj Sat Flow, veh/h/ln	1900
Adj Flow Rate, veh/h	1
Adj No. of Lanes	0
Peak Hour Factor	0.93
Percent Heavy Veh, %	2
Cap, veh/h	1
Arrive On Green	1.00
Sat Flow, veh/h	2
Grp Volume(v), veh/h	1161
Grp Sat Flow(s),veh/h/In	1862
Q Serve(g_s), s	0.0
Cycle Q Clear(g_c), s	0.0
Prop In Lane	0.00
Lane Grp Cap(c), veh/h	1518
V/C Ratio(X)	0.76
Avail Cap(c_a), veh/h	1518
HCM Platoon Ratio	2.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	0.0
Incr Delay (d2), s/veh	3.7
Initial Q Delay(d3),s/veh	0.0
%ile BackOfQ(-26165%),veh/	
LnGrp Delay(d),s/veh	3.7
LnGrp LOS	Α
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
Timer	State of the second

2036 AM Peak Hour Full Build

HCM 2010 TWSC 4: Bunker Ln & Seldom Seen Rd.

Intersection	11111	12221	State T	12 2. 2 14	1. 190	SMM W	Y. L. MAN	Allena	L. LEW	2. Mana		THE N
Int Delay, s/veh	2.2											
										- 10 L		
Movement	EBL	EBT	EBR	WB	L WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Vol, veh/h	10	317	86	2	3 264	11	51	1	23	8	2	13
Conflicting Peds, #/hr	0	0	1		0 0	0	0	0	0	0	0	2
Sign Control	Free	Free	Free	Fre	e Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-		None			None			None	-	-	None
Storage Length	175		-	17	5 -		125		-	125	-	
Veh in Median Storage, #	-	0	-		- 0	-		0			0	1.1
Grade, %		0	-		- 0		+	0	-		0	
Peak Hour Factor	93	93	93	9	3 93	93	93	93	93	93	93	93
Heavy Vehicles, %	~1	1	1		1 1	1	0	0	0	0	0	(
Mvmt Flow	11	341	92	2	5 284	12	55	1	25	9	2	14
				Materia		- Internet	Minaud		Laboration of	Minor	1.50	Carry and
Major/Minor	Major1		112 - 12 - 1	Major		CHORE -	Minor1	750	007	Minor2	700	000
Conflicting Flow All	298	0	0	43		0	758	756	387	763	796	293
Stage 1	•	-	•			-	409	409	•	341	341	
Stage 2		- 7				•	349	347	-	422	455	
Critical Hdwy	4.11	-	•	4.1		•	7.1	6.5	6.2	7.1	6.5	6.2
Critical Hdwy Stg 1		-					6.1	5.5		6.1	5.5	- 3
Critical Hdwy Stg 2	-			0.00			6.1	5.5	-	6.1	5.5	0.0
Follow-up Hdwy	2.209		-	2.20			3.5	4	3.3	3.5	4	3.3
Pot Cap-1 Maneuver	1269	-	-	113	2 -	-	326	340	665	324	322	751
Stage 1	•						623	600	-	678	642	
Stage 2	-	-				•	671	638	•	613	572	
Platoon blocked, %	1000				-		011	000	005	000	010	740
Mov Cap-1 Maneuver	1268	-	-	113	2 -	•	311	329	665	303	312	749
Mov Cap-2 Maneuver		-			• •		311	329	-	303	312	
Stage 1	-	•	-			-	618	595	-	671	627	
Stage 2	-	-					641	623		584	567	
Approach	EB	1001	11.5	W	3	Maria	NB	1000	219101	SB	1212	
HCM Control Delay, s	0.2			0.			16.4			13.1		
HCM LOS	ULL			0.			C			В		
Minor Lono/Major Mumt	NPLet	IDI nO	EDI	EBT EBI	R WBL	WBT	WBR SBLn1	SRI no	Silver and	10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	1916 1877	
Minor Lane/Major Mvmt	NBLn1		EBL			WDI			1 18 2 4	25-15-11-14-14	1000	and the
Capacity (veh/h)	311	638	1268		- 1132		- 303	631				
HCM Lane V/C Ratio	0.176		0.008	-	- 0.022	•	- 0.028					
HCM Control Delay (s)	19	10.9	7.9		- 8.3	•	- 17.2	10.9				

С

0.6

В

0.1

Α

0

-

A

0.1

С

0.1

В

0.1

HCM Lane LOS

HCM 95th %tile Q(veh)

9 -	۶	~	1	†	Ŧ	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	٣	1	٦	†	ţ,		
Volume (veh/h)	48	288	283	506	699	190	
Number	7	14	5	2	6	16	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/in	1863	1863	1863	1863	1845	1900	
Adj Flow Rate, veh/h	52	310	304	544	752	204	
Adj No. of Lanes	1	1	1	1	1	0	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	2	2	2	2	3	3	
Cap, veh/h	315	281	271	1283	963	261	
Arrive On Green	0.18	0.18	0.69	0.69	0.69	0.69	
Sat Flow, veh/h	1774	1583	585	1863	1398	379	
Grp Volume(v), veh/h	52	310	304	544	0	956	
Grp Sat Flow(s),veh/h/ln	1774	1583	585	1863	0	1778	
Q Serve(g_s), s	2.2	16.0	29.4	11.6	0.0	32.6	
Cycle Q Clear(g_c), s	2.2	16.0	62.0	11.6	0.0	32.6	
Prop In Lane	1.00	1.00	1.00			0.21	
Lane Grp Cap(c), veh/h	315	281	271	1283	0	1225	
V/C Ratio(X)	0.16	1.10	1.12	0.42	0.00	0.78	
Avail Cap(c_a), veh/h	315	281	271	1283	0	1225	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	
Uniform Delay (d), s/veh	31.3	37.0	34.6	6.2	0.0	9.4	
Incr Delay (d2), s/veh	0.2	83.5	91.2	1.0	0.0	5.0	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(-26165%),veh/In	1.1	13.5	13.6	6.3	0.0	17.4	
LnGrp Delay(d),s/veh	31.6	120.5	125.8	7.2	0.0	14.4	
LnGrp LOS	С	F	F	А	and the	В	
Approach Vol, veh/h	362			848	956		
Approach Delay, s/veh	107.8			49.7	14.4		
Approach LOS	F			D	В		
Timer	1	2	3	4	5	6	7 8
Assigned Phs		2		4		6	
Phs Duration (G+Y+Rc), s		68.0		22.0		68.0	
Change Period (Y+Rc), s		6.0		6.0		6.0	
Max Green Setting (Gmax), s		62.0		16.0		62.0	
Max Q Clear Time (g_c+l1), s		64.0		18.0		34.6	
Green Ext Time (p_c), s		0.0		0.0		17.3	
Intersection Summary	Him	and the second	12.12%		at a star		
HCM 2010 Ctrl Delay			43.8				
HCM 2010 LOS			D				

	۶	-+	Y	*	+	٩	1	1	1	1	ŧ	1	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL.	SBT	SBR	
Lane Configurations	ሻሻ	^	7	۲	† ‡		ካካ	† †	*	ሻሻ	† †	7	
Volume (veh/h)	172	318	122	137	293	67	278	931	130	361	1734	232	
Number	5	2	12	1	6	16	3	8	18	7	4	14	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1863	1863	1881	1881	1900	1863	1863	1863	1881	1881	1881	
Adj Flow Rate, veh/h	185	342	131	147	315	72	299	1001	140	388	1865	249	
Adj No. of Lanes	2	2	1	1	2	0	2	2	1	2	2	1	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	2	2	2	1	1	1	2	2	2	1	1	1	
Cap, veh/h	241	592	392	270	485	109	275	1602	796	718	1654	820	
Arrive On Green	0.07	0.17	0.17	0.07	0.17	0.16	0.11	0.60	0.59	0.12	0.62	0.60	
Sat Flow, veh/h	3442	3539	1583	1792	2899	654	3442	3539	1583	3476	3574	1599	a far han a she had
Grp Volume(v), veh/h	185	342	131	147	192	195	299	1001	140	388	1865	249	
Grp Sat Flow(s), veh/h/li	1721	1770	1583	1792	1787	1766	1721	1770	1583	1738	1787	1599	
Q Serve(g_s), s	5.3	8.9	6.8	6.8	10.1	10.3	8.0	18.0	3.7	5.8	46.3	7.0	
Cycle Q Clear(g_c), s	5.3	8.9	6.8	6.8	10.1	10.3	8.0	18.0	3.7	5.8	46.3	7.0	
Prop In Lane	1.00		1.00	1.00		0.37	1.00		1.00	1.00		1.00	
Lane Grp Cap(c), veh/h	241	592	392	270	299	296	275	1602	796	718	1654	820	
V/C Ratio(X)	0.77	0.58	0.33	0.54	0.64	0.66	1.09	0.62	0.18	0.54	1.13	0.30	
Avail Cap(c_a), veh/h	241	849	507	270	429	424	275	1602	796	754	1654	820	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.33	1.33	1.33	1.33	1.33	1.33	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/vel	n 45.7	38.4	30.9	32.2	38.8	39.1	44.7	14.5	9.8	14.0	19.2	9.9	
Incr Delay (d2), s/veh	13.9	0.9	0.5	2.3	2.3	2.5	79.1	1.8	0.5	0.7	65.9	1.0	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(-26165%),vəhîln	4.4	3.0	3.5	5.2	5.2	6.8	9.1	1.7	2.8	37.5	3.2	
LnGrp Delay(d),s/veh	59.6	39.3	31.4	34.4	41.2	41.6	123.8	16.3	10.3	14.7	85.1	10.8	
LnGrp LOS	Е	D	С	С	D	D	F	В	В	В	F	В	
Approach Vol, veh/h		658			534			1440			2502		
Approach Delay, s/veh		43.4			39.5			38.0			66.8		
Approach LOS		D			D			D			E		
Timer	1	2	3	4	5	6	7	8	(Share)				
Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc)	\$3.0	21.7	14.0	51.3	13.0	21.7	15.0	50.3					
Change Period (Y+Rc),	s 7.0	6.0	7.0	6.0	7.0	6.0	7.0	6.0					
Max Green Setting (Gm	ax6,0	23.0	7.0	38.0	6.0	23.0	9.0	36.0					
Max Q Clear Time (g_c-	+118,85	10.9	10.0	48.3	7.3	12.3	7.8	20.0					
Green Ext Time (p_c), s	0.0	3.6	0.0	0.0	0.0	3.4	0.2	14.6					
Intersection Summary		The second											
HCM 2010 Ctrl Delay			52.9										
HCM 2010 LOS			D										

	۶	+	7	4	-	*	1	†	1	4	Ŧ	1	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		ሻ	ţ,		٢	ተኩ		ሻ	朴臣		
Volume (veh/h)	19	8	55	35	1	18	20	1183	73	57	2192	28	
Number	7	4	14	3	8	18	5	2	12	1	6	16	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	0.99		0.99	0.99		0.99	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1900	1881	1900	1792	1792	1900	1863	1863	1900	1863	1863	1900	
Adj Flow Rate, veh/h	20	9	59	38	1	19	22	1272	78	61	2357	30	
Adj No. of Lanes	0	1	0	1	1	0	1	2	0	1	2	0	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	1	1	1	6	6	6	2	2	2	2	2	2	
Cap, veh/h	64	22	84	172	6	113	191	2749	168	398	2904	37	
Arrive On Green	0.08	0.08	0.08	0.08	0.08	0.08	1.00	1.00	1.00	1.00	1.00	1.00	
Sat Flow, veh/h	248	275	1065	1269	76	1437	146	3388	207	402	3579	45	
Grp Volume(v), veh/h	88	0	0	38	0	20	22	663	687	61	1163	1224	
Grp Sat Flow(s),veh/h/lr	1589	0	0	1269	0	1513	146	1770	1826	402	1770	1855	
Q Serve(g_s), s	3.0	0.0	0.0	0.0	0.0	1.2	0.0	0.0	0.0	0.0	0.0	0.0	
Cycle Q Clear(g_c), s	5.3	0.0	0.0	2.8	0.0	1.2	0.0	0.0	0.0	0.0	0.0	0.0	
Prop In Lane	0.23		0.67	1.00		0.95	1.00		0.11	1.00		0.02	
Lane Grp Cap(c), veh/h	169	0	0	172	0	119	191	1436	1481	398	1436	1505	
V/C Ratio(X) A	0.52	0.00	0.00	0.22	0.00	0.17	0.12	0.46	0.46	0.15	0.81	0.81	
Avail Cap(c_a), veh/h	342	0	0	313	0	287	191	1436	1481	398	1436	1505	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.33	1.33	1.33	1.33	1.33	1.33	
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh		0.0	0.0	43.8	0.0	43.0	0.0	0.0	0.0	0.0	0.0	0.0	
ncr Delay (d2), s/veh	2.5	0.0	0.0	0.6	0.0	0.7	1.2	1.1	1.0	0.8	5.0	4.9	
nitial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(-26165%)			0.0	1.0	0.0	0.5	0.1	0.4	0.4	0.1	2.0	2.1	
_nGrp Delay(d),s/veh	47.3	0.0	0.0	44.4	0.0	43.7	1.2	1.1	1.0	0.8	5.0	4.9	
_nGrp LOS	D		1 Salar	D		D	Α	Α	Α	Α	Α	Α	
Approach Vol, veh/h		88			58			1372			2448		
Approach Delay, s/veh		47.3			44.1			1.1			4.9		
Approach LOS		D			D			А			A		
Timer	1	2	3	4	5	6	7	8	196.51				「現在の時間で、
Assigned Phs		2		4		6		8					
Phs Duration (G+Y+Rc),		86.1	12.57	13.9		86.1		13.9					
Change Period (Y+Rc),		6.0		6.0		6.0		6.0					
Max Green Setting (Gma		69.0		19.0		69.0		19.0					
Max Q Clear Time (g_c+	-l1), s	2.0		7.3		2.0		4.8					
Green Ext Time (p_c), s	250223	61.7		0.3		61.7	12.00	0.3	1.50 E.A.				
ntersection Summary	10-119-2	(Susal)		H SE S	Turk		Post 2 Ser						· · · · · · · · · · · · · · · · · · ·
HCM 2010 Ctrl Delay			5.1										
HCM 2010 LOS			А										

0.1

5/5/2015

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	0	0	10	C	0	13	0	1126	54	0	2163	1
Conflicting Peds, #/hr	0	0	8	C	0	2	0	0	0	0	0	5
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None		-	None			None	-	-	None
Storage Length		-	0			0		4	210			
Veh in Median Storage, #	-	0	•	,	0			0	-		0	
Grade, %	-	0	-		0	-		0		-	0	-
Peak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	C	0	0	2	2	2	2	2	2
Mvmt Flow	0	0	11	C	0	14	0	1211	58	0	2326	1
四個語 编词 141												
Major/Minor	Minor2	State at	1852	Minor1	The hast		Major1	W	No SEA	Major2		1 th
Conflicting Flow All	2941	3547	1171	2384	3548	612	2335	0	0	1213	0	0
Stage 1	2334	2334		1213	1213			+				
Stage 2	607	1213		1171 e 1171	2335				-		-	
Critical Hdwy	7.54	6.54	6.94	7.5	6.5	6.9	4.14	-		4.14	-	-
Critical Hdwy Stg 1	6.54	5.54	-	6.5	5.5			-	-		-	-
Critical Hdwy Stg 2	6.54	5.54	-	6.5	5.5	-		-				
Follow-up Hdwy	3.52	4.02	3.32	3.5	• 4	3.3	2.22	-	-	2.22	-	
Pot Cap-1 Maneuver	7	6	186	18	6	441	209	-	-	571	्रम	
Stage 1	37	69	-	196	257			-		-	-	
Stage 2	450	253		208	71	-	-	-	-	· · · ·	-	- 07
Platoon blocked, %								-	-			
Mov Cap-1 Maneuver	7	6	185	17	6	438	209	-	-	569		
Mov Cap-2 Maneuver	7	6	+	17	6	-				-		-
Stage 1	37	69	-	196	257	-	-	+	-	-	-	
Stage 2	434	253	-	196	71	-			-		-	-
Annuarah	FD	NE SERVICE		14/0	a constant	11. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NB	Navine 12	and and	SB	n. k. et	Viluan
Approach	EB	Sec.	J84.16	WB	2 al al	Il June		Martin .			Vel de	At from
HCM Control Delay, s	25.7			13.5			0			0		
HCM LOS	D			В								
Minor Lane/Major Mvmt	NBL	NBT	NBRI	EBLn1WBLn1	SBL	SBT	SBR	1007-0			19211	Francis
Capacity (veh/h)	209	-	-	185 438	569	-	-					
HCM Lane V/C Ratio		-	-	0.058 0.032	-	-	-					
HCM Control Delay (s)	0		-	25.7 13.5	0							
HCM Lane LOS	A		-	D B	A							
HCM 95th %tile Q(veh)	0			0.2 0.1	0							

7	۶	-+	7	4	+	*	1	†	1	4	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f,		ሻ	1 2		٦	∱ ₽		ሻ	† ₽	
Volume (veh/h)	47	102	141	278	46	80	52	929	172	127	1704	79
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1881	1881	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	51	110	152	299	49	86	56	999	185	137	1832	85
Adj No. of Lanes	1	1	0	1	1	0	1	2	0	1	2	0
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	2	2	2	1	1	1	2	2	2	2	2	2
Cap, veh/h	267	92	127	215	102	179	156	1569	290	347	1890	87
Arrive On Green	0.04	0.13	0.12	0.08	0.17	0.16	0.06	0.70	0.69	0.09	0.73	0.72
Sat Flow, veh/h	1774	709	980	1792	614	1077	1774	2983	552	1774	3446	159
Grp Volume(v), veh/h	51	0	262	299	0	135	56	592	592	137	934	983
Grp Sat Flow(s),veh/h/ln	1774	0	1690	1792	0	1691	1774	1770	1765	1774	1770	1835
Q Serve(g_s), s	2.4	0.0	13.0	8.0	0.0	7.3	1.4	18.1	18.3	3.4	48.0	50.4
Cycle Q Clear(g_c), s	2.4	0.0	13.0	8.0	0.0	7.3	1.4	18.1	18.3	3.4	48.0	50.4
Prop In Lane	1.00		0.58	1.00		0.64	1.00		0.31	1.00		0.09
Lane Grp Cap(c), veh/h	267	0	220	215	0	281	156	931	929	347	971	1006
V/C Ratio(X)	0.19	0.00	1.19	1.39	0.00	0.48	0.36	0.64	0.64	0.39	0.96	0.98
Avail Cap(c_a), veh/h	278	0	220	215	0	281	224	931	929	393	971	1006
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.33	1.33	1.33	1.33	1.33	1.33
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	35.2	0.0	43.8	38.3	0.0	38.1	22.7	9.8	10.0	11.2	12.6	13.0
Incr Delay (d2), s/veh	0.3	0.0	122.6	200.9	0.0	1.3	1.4	3.3	3.3	0.7	21.2	23.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(-26165%),veh/In		0.0	13.5	17.1	0.0	3.5	0.9	9.4	9.5	1.8	28.2	31.2
LnGrp Delay(d),s/veh	35.6	0.0	166.4	239.1	0.0	39.3	24.1	13.1	13.4	11.9	33.8	36.2
LnGrp LOS	D		F	F	Saltan/	D	С	В	В	В	С	D
Approach Vol, veh/h		313			434			1240			2054	
Approach Delay, s/veh		145.1			177.0			13.7		1.57 2	33.5	
Approach LOS		F			F			В			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	11.4	57.6	13.0	18.0	9.2	59.8	9.4	21.6				
Change Period (Y+Rc), s	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0				
Max Green Setting (Gmax), s	8.0	49.0	7.0	12.0	7.0	50.0	4.0	15.0				
Max Q Clear Time (g_c+l1), s	5.4	20.3	10.0	15.0	3.4	52.4	4.4	9.3				
Green Ext Time (p_c), s	0.1	24.5	0.0	0.0	0.0	0.0	0.0	0.6	12.2.30	10/2/201		1999 (SU)
Intersection Summary	N. M			法复杂的			STEP DE LA			e desta and		
HCM 2010 Ctrl Delay			51.5									
HCM 2010 LOS			D									

	۶	->	7	*	-	*	*	1	1	L#	1	¥
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT
Lane Configurations	ኻ	ĥ		ሻ	₽		3	† ⊅			24	- † Þ
Volume (veh/h)	3	1	8	86	0	13	16	1178	74	6	50	2117
Number	7	4	14	3	8	18	5	2	12		1	6
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0		0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1900	1863	1863	1900		1863	1863
Adj Flow Rate, veh/h	3	1	9	92	0	14	17	1267	80		54	2276
Adj No. of Lanes	1	1	0	1	1	0	1	2	0		1	2
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93		0.93	0.93
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2		2	2
Cap, veh/h	184	14	128	188	0	140	201	2676	169		341	2873
Arrive On Green	0.09	0.09	0.09	0.09	0.00	0.09	0.79	0.79	0.79		1.00	1.00
Sat Flow, veh/h	1394	161	1447	1399	0	1583	163	3382	213		404	3630
Grp Volume(v), veh/h	3	0	10	92	0	14	17	662	685		54	1109
Grp Sat Flow(s), veh/h/ln	1394	0	1607	1399	0	1583	163	1770	1825		404	1770
Q Serve(g_s), s	0.2	0.0	0.6	6.5	0.0	0.8	2.4	12.5	12.5		2.5	0.0
Cycle Q Clear(g_c), s	1.0	0.0	0.6	7.0	0.0	0.8	2.4	12.5	12.5		15.1	0.0
Prop In Lane	1.00	0.0	0.90	1.00	0.0	1.00	1.00	12.0	0.12		1.00	010
Lane Grp Cap(c), veh/h	184	0	142	188	0	140	201	1400	1444		341	1400
V/C Ratio(X)	0.02	0.00	0.07	0.49	0.00	0.10	0.08	0.47	0.47		0.16	0.79
Avail Cap(c_a), veh/h	284	0.00	257	288	0.00	253	201	1400	1444		341	1400
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		2.00	2.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00		1.00	1.00
Uniform Delay (d), s/veh	42.4	0.0	41.8	45.0	0.00	41.9	2.4	3.5	3.5		1.2	0.0
Incr Delay (d2), s/veh	0.0	0.0	0.2	2.0	0.0	0.3	0.8	1.1	1.1		1.0	4.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
		0.0	0.0	2.6	0.0	0.0	0.0	6.3	6.5		0.4	1.8
%ile BackOfQ(-26165%),veh/In		0.0	42.0	47.0	0.0	42.2	3.3	4.6	4.6		2.2	4.7
LnGrp Delay(d),s/veh	42.4 D	0.0	42.0 D	47.0 D	0.0	42.2 D	3.5 A	4.0 A	4.0 A		A	4.7 A
LnGrp LOS	U	10	U	U	100	U	A		<u></u>		7	
Approach Vol, veh/h		13			106			1364				2331 4.5
Approach Delay, s/veh		42.1			46.3			4.6				
Approach LOS		D			D			А				A
Timer	1	2	3	4	5	6	7	8			化的风风	al. The
Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		85.1		14.9		85.1		14.9				
Change Period (Y+Rc), s		6.0		6.0		6.0		6.0				
Max Green Setting (Gmax), s		72.0		16.0		72.0		16.0				
Max Q Clear Time (g_c+l1), s		14.5		3.0		17.1		9.0				
Green Ext Time (p_c), s		52.1		0.3		50.0		0.2				
Intersection Summary		1926 2.5			W Parents					A SALAR		1000
HCM 2010 Ctrl Delay	11916		5.8	Telli .		116220						
HCM 2010 LOS			A									
	at the second	100021 (n. 113	CALIFORNIS DE	States Ste	Para and a second	2 States	5. 2 C 1 C 1 C 1		Contraction of the	101923	SIS 390 S.	Res of the opp
Notes	2 月前半日	A CONTRACTOR	U. A. DA	15. 13 24	What we want have	the Dellis Days	ACC NOR	1.11	menter 201	and to particular	ar the second	C. C

	1
	*
Movement	SBR
Larteconfigurations	
Volume (veh/h)	1
Number	16
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Adj Sat Flow, veh/h/ln	1900
Adj Flow Rate, veh/h	1
Adj No. of Lanes	0
Peak Hour Factor	0.93
Percent Heavy Veh, %	2
Cap, veh/h	1
Arrive On Green	1.00
Sat Flow, veh/h	2
Grp Volume(v), veh/h	1168
Grp Sat Flow(s),veh/h/ln	1862
Q Serve(g_s), s	0.0
Cycle Q Clear(g_c), s	0.0
Prop In Lane	0.00
Lane Grp Cap(c), veh/h	1474
V/C Ratio(X)	0.79
Avail Cap(c_a), veh/h	1474
HCM Platoon Ratio	2.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	0.0
Incr Delay (d2), s/veh	4.4
Initial Q Delay(d3),s/veh	0.0
%ile BackOfQ(-26165%),veh/In	
LnGrp Delay(d),s/veh	4.4
LnGrp LOS	Α
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
Timer	

2036 PM Peak Hour No Build

Int	ersecti	ion		80	
Int	Dolay	chio	h		

Mov Cap-1 Maneuver

958

3.5 Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	25	515	42	33	556	26	43	0	37	25	1	21
Conflicting Peds, #/hr	0	0	1	0	0	0	0	0	0	0	0	2
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	175	-	-	175		-	0			0		-
Veh in Median Storage, #	-	0		-	0	-	-	0			0	-
Grade, %	1 -	0	1.00	-	0	-	-	0		-	0	-
Peak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93
Heavy Vehicles, %	1	1	1	1	1	1	0	0	0	0	0	0
Mvmt Flow	27	554	45	35	598	28	46	0	40	27	1	23
11. 新教士 - 新知												
Major/Minor	Major1	动作	323	Major2	to and	-7-10	Minor1	520	The later of	Minor2	The set	in the
Conflicting Flow All	628	0	0	599	0	0	1327	1329	576	1335	1338	615
Stage 1	-	-	-		-	-	630	630	-	685	685	-
Stage 2			÷.,		-	-	697	699	-	650	653	
Critical Hdwy	4.11	-	-	4.11	-	•	7.1	6.5	6.2	7.1	6.5	6.2
Critical Hdwy Stg 1		-	-	-	-		6.1	5.5	-	6.1	5.5	-
Critical Hdwy Stg 2	-				-		6.1	5.5		6.1	5.5	-
Follow-up Hdwy	2.209		-	2.209	-		3.5	4	3.3	3.5	4	3.3
Pot Cap-1 Maneuver	959		-	983	-	-	134	156	521	132	154	495
Stage 1	-	-	-		-	-	473	478	-	441	451	-
Stage 2	-	-	-			-	435	445	-	461	467	
Platoon blocked, %			-		-	-						
												101

Mov Cap-2 Maneuver - - - - 121 146 - 116 144 - Stage 1 - - - - 460 465 - 428 434 - Stage 2 - - - - 399 428 - 414 454 - Approach EB WB NB SB SB	HCM Control Delay, s HCM LOS		0.4			0.5			33.8 D			30.4 D		
Stage 1 460 465 - 428 434 -	Approach		EB	1.04.1	12 11 2 2	WB	11	Charles"	NB		all and	SB	5	-1
	Stage 2			•	-	-	•		399	428	14	414	454	4
Mov Cap-2 Maneuver 121 146 - 116 144 -			-	-	· • ·	-	•	•	460	465		428	434	-
	Mov Cap-2 Maneuver	• • •	-	-	-	-	-	-	121	146	-	116	144	- 1

-

121

-

146

521

116

144

494

983

-

...

Minor Lane/Major Mvmt		NBLn1	NBLn2	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1	SBLn2	and the second second second second
Capacity (veh/h)		121	521	958	-	-	983	-		116	445	
HCM Lane V/C Ratio	۵	0.382	0.076	0.028		-	0.036			0.232	0.053	
HCM Control Delay (s)		52.1	12.5	8.9	-	-	8.8	-		45.2	13.5	
HCM Lane LOS		F	В	Α	+	-	Α		-	E	В	
HCM 95th %tile Q(veh)		1.6	0.2	0.1			0.1	-	- 3	0.8	0.2	

	۶	7	1	†	Ļ	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	٦	1	ኻ	1	ţ,		
Volume (veh/h)	190	337	336	852	545	192	
Number	7	14	5	2	6	16	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/In	1863	1863	1863	1863	1845	1900	
Adj Flow Rate, veh/h	204	362	361	916	586	206	
Adj No. of Lanes	1	1	1	1	1	0	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	2	2	2	2	3	3	
Cap, veh/h	355	317	349	1242	870	306	
Arrive On Green	0.20	0.20	0.67	0.67	0.67	0.67	
Sat Flow, veh/h	1774	1583	682	1863	1305	459	
Grp Volume(v), veh/h	204	362	361	916	0	792	
Grp Sat Flow(s), veh/h/ln	1774	1583	682	1863	0	1764	
Q Serve(g_s), s	9.4	18.0	35.5	29.0	0.0	24.5	
Cycle Q Clear(g_c), s	9.4	18.0	60.0	29.0	0.0	24.5	
Prop In Lane	1.00	1.00	1.00	20.0	010	0.26	
Lane Grp Cap(c), veh/h	355	317	349	1242	0	1176	
V/C Ratio(X)	0.57	1.14	1.03	0.74	0.00	0.67	
Avail Cap(c_a), veh/h	355	317	349	1242	0	1176	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	
Uniform Delay (d), s/veh	32.5	36.0	31.3	9.8	0.0	9.1	
Incr Delay (d2), s/veh	2.3	95.2	57.0	2.4	0.0	1.5	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(-26165%),veh/ln		16.2	14.2	15.6	0.0	12.2	
LnGrp Delay(d),s/veh	34.8	131.2	88.3	12.2	0.0	10.6	
LnGrp LOS	04.0 C	F	50.5 F	B	0.0	B	
				1277	792	U	
Approach Vol, veh/h	566			33.7	10.6		
Approach Delay, s/veh	96.4 F			33.7 C	10.0 B		
Approach LOS	F	-	0	and the second second		0	-
Timer Assigned Phys	An A	2	3	4	5	6	7 8
Assigned Phs							
Phs Duration (G+Y+Rc), s		66.0		24.0		66.0 6.0	
Change Period (Y+Rc), s		6.0		6.0			
Max Green Setting (Gmax), s		60.0		18.0		60.0	
Max Q Clear Time (g_c+l1), s		62.0		20.0		26.5	
Green Ext Time (p_c), s		0.0		0.0	and states that the	22.0	
Intersection Summary	in the se		10.0		State Mar		
HCM 2010 Ctrl Delay HCM 2010 LOS			40.2				
			D				

	۶	-	7	1	+	٩	*	1	1	1	Ļ	4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻሻ	^	1	ሻ	- † Þ		ካካ		1	ሻሻ	一十十	1	
Volume (veh/h)	532	473	137	299	389	194	433	2271	228	514	1404	185	
Number	5	2	12	1	6	16	3	8	18	7	4	14	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1863	1863	1881	1881	1900	1863	1863	1863	1881	1881	1881	
Adj Flow Rate, veh/h	572	509	147	322	418	209	466	2442	245	553	1510	199	
Adj No. of Lanes	2	2	1	1	2	0	2	2	1	2	2	1	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	2	2	2	1	1	1	2	2	2	1	1	1	
Cap, veh/h	373	531	435	245	328	163	430	1652	871	348	1579	853	
Arrive On Green	0.11	0.15	0.15	0.10	0.14	0.13	0.13	0.47	0.46	0.10	0.44	0.43	
Sat Flow, veh/h	3442	3539	1583	1792	2319	1147	3442	3539	1583	3476	3574	1599	
Grp Volume(v), veh/h	572	509	147	322	321	306	466	2442	245	553	1510	199	
Grp Sat Flow(s), veh/h/lr	1721	1770	1583	1792	1787	1679	1721	1770	1583	1738	1787	1599	
Q Serve(g_s), s	13.0	17.1	8.9	12.0	17.0	17.0	15.0	56.0	9.9	12.0	49.0	8.0	
Cycle Q Clear(g_c), s	13.0	17.1	8.9	12.0	17.0	17.0	15.0	56.0	9.9	12.0	49.0	8.0	
Prop In Lane	1.00		1.00	1.00		0.68	1.00		1.00	1.00		1.00	
Lane Grp Cap(c), veh/h	373	531	435	245	253	238	430	1652	871	348	1579	853	
V/C Ratio(X)	1.53	0.96	0.34	1.32	1.27	1.29	1.08	1.48	0.28	1.59	0.96	0.23	
Avail Cap(c_a), veh/h	373	531	435	245	253	238	430	1652	871	348	1579	853	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	n 53.5	50.6	34.8	43.2	51.5	51.8	52.5	32.0	14.4	54.0	32.4	14.9	
Incr Delay (d2), s/veh	253.5	28.9	0.5	167.8	148.2	156.7	67.6	218.7	0.8	279.2	14.4	0.6	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(-26165%)), Vet 9Ir	10.5	3.9	20.5	18.8	18.2	11.2	77.5	4.5	19.2	27.3	3.6	
LnGrp Delay(d),s/veh	307.0	79.5	35.2	211.0	199.7	208.5	120.1	250.7	15.2	333.2	46.8	15.6	
LnGrp LOS	F	Ε	D	F	F	F	F	F	В	F	D	В	
Approach Vol, veh/h		1228			949			3153			2262		
Approach Delay, s/veh		180.2			206.4			213.1			114.1		
Approach LOS		F			F			F			F		
Timer	1	2	3	4	5	6	7	8					
Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc)	\$8.0	23.0	21.0	58.0	19.0	22.0	18.0	61.0					
Change Period (Y+Rc),		6.0	7.0	6.0	7.0	6.0	7.0	6.0					
Max Green Setting (Gm		17.0	14.0	52.0	12.0	16.0	11.0	55.0					
Max Q Clear Time (g_c-		19.1	17.0	51.0	15.0	19.0	14.0	58.0					
Green Ext Time (p_c), s		0.0	0.0	1.0	0.0	0.0	0.0	0.0					
Intersection Summary		- Sala				加加					N. The		
HCM 2010 Ctrl Delay	Se per		177.4										
HCM 2010 LOS			F										

	۶	+	7	4	+	*	1	1	1	1	Ļ	~	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		7	1.		ሻ	A		۳.	† 1-		
Volume (veh/h)	40	20	34	53	15	19	96	3042	138	33	1891	43	
Number	7	4	14	3	8	18	5	2	12	1	6	16	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	0.99		0.99	0.99		0.98	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1900	1881	1900	1792	1792	1900	1863	1863	1900	1863	1863	1900	
Adj Flow Rate, veh/h	43	22	37	57	16	20	103	3271	148	35	2033	46	
Adj No. of Lanes	0	1	0	1	1	0	1	2	0	1	2	0	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	1	1	1	6	6	6	2	2	2	2	2	2	
Cap, veh/h	72	22	29	131	48	60	227	2903	130	60	2978	67	
Arrive On Green	0.07	0.07	0.07	0.07	0.07	0.07	0.84	0.84	0.83	1.00	1.00	1.00	
Sat Flow, veh/h	438	325	435	1280	718	897	198	3450	155	51	3538	80	
Grp Volume(v), veh/h	102	0	0	57	0	36	103	1666	1753	35	1013	1066	
Grp Sat Flow(s), veh/h/lr	1198	0	0	1280	0	1615	198	1770	1835	51	1770	1849	
Q Serve(g_s), s	5.4	0.0	0.0	0.0	0.0	2.6	20.5	101.0	101.0	0.0	0.0	0.0	
Cycle Q Clear(g_c), s	8.0	0.0	0.0	6.3	0.0	2.6	20.5	101.0	101.0	101.0	0.0	0.0	
Prop In Lane	0.42		0.36	1.00		0.56	1.00		0.08	1.00		0.04	
Lane Grp Cap(c), veh/h		0	0	131	0	108	227	1489	1544	60	1489	1556	
V/C Ratio(X)	0.83	0.00	0.00	0.43	0.00	0.33	0.45	1.12	1.14	0.58	0.68	0.69	
Avail Cap(c_a), veh/h	123	0	0	131	0	108	227	1489	1544	60	1489	1556	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh		0.0	0.0	55.2	0.0	53.5	3.1	9.5	9.5	50.5	0.0	0.0	
Incr Delay (d2), s/veh	36.3	0.0	0.0	2.3	0.0	1.8	6.4	62.9	69.4	35.3	2.5	2.5	
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(-26165%)			0.0	2.0	0.0	1.2	1.5	73.2	78.7	1.7	1.0 2.5	1.1 2.5	
LnGrp Delay(d),s/veh	93.7	0.0	0.0	57.5	0.0	55.3	9.5	72.4	79.0 F	85.8 F	2.5 A		
LnGrp LOS	F	100		E	00	E	А	F	Г	E.		A	
Approach Vol, veh/h		102			93			3522			2114		
Approach Delay, s/veh		93.7			56.6			73.8			3.9		
Approach LOS		F			E			E	and the second second	110 100 100	А		
Timer	1	2	3	4	5	6	7	8					
Assigned Phs		2		4		6		8					
Phs Duration (G+Y+Rc),		106.0		14.0		106.0		14.0					
Change Period (Y+Rc),		6.0		6.0		6.0		6.0					
Max Green Setting (Gm				8.0		100.0		8.0					
Max Q Clear Time (g_c+				10.0		103.0 0.0		8.3 0.0					
Green Ext Time (p_c), s		0.0		0.0	Charlest Street Street	0.0		0.0	Manager and	Contraction		and the second	
Intersection Summary	6 (m.2	and a marked		1. 11 1 IS	STANKS-FUL				EV ZIE S		101 - 101 - 10 - 10 - 10 - 10 - 10 - 10	1.04.00	「「「「「「「「「「「「」」」」」
HCM 2010 Ctrl Delay			48.6										
HCM 2010 LOS			D										

Intersection Int Delay, s/veh

h 0.5

Movement	EBL	EBT	EBR	WBI	. WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Vol, veh/h	0	0	10) 0	35	0	2871	108	0	1856	(
Conflicting Peds, #/hr	0	0	8	() 0	2	0	0	0	0	0	1
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None			None			None		-	None
Storage Length		-	0			0	-		210	-	-	
Veh in Median Storage, #	•	0			. 0	•		0	-		0	
Grade, %		0			. 0		-	0			0	
Peak Hour Factor	93	93	93	9:	93	93	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	() 0	0	2	2	2	2	2	2
Mvmt Flow	0	0	11	(0 0	38	0	3087	116	0	1996	6
Major/Minor	Minor2	Le us	Tol	Minor	100	Nº.	Major1	- (D).		Major2	1998	NO.L.
Conflicting Flow All	3553	5096	1009	409	5099	1551	2010	0	0	3089	0	(
Stage 1	2007	2007	-	3089	3089	-			-	-	-	
Stage 2	1546	3089		1000	2010			-			-	
Critical Hdwy	7.54	6.54	6.94	7.	6.5	6.9	4.14	-		4.14	-	
Critical Hdwy Stg 1	6.54	5.54	-	6.5	5.5	-	-			-		
Critical Hdwy Stg 2	6.54	5.54	-	6.5	5.5		+		-		-	
Follow-up Hdwy	3.52	4.02	3.32	3.	5 4	3.3	2.22			2.22	-	
Pot Cap-1 Maneuver	2	0	238		1	105	280		-	104		
Stage 1	61	102		12	28	-	-		-		-	
Stage 2	120	28	-	262	2 104	-	÷					1.0
Platoon blocked, %									-		4	
Mov Cap-1 Maneuver	1	0	236		1	104	280			104	-	
Mov Cap-2 Maneuver	1	0	-	3	1	-			-		-	. 6 p
Stage 1	61	101	-	12	28	-	-	-	-			
Stage 2	76	28		250	103	-		-	-		1	
Approach	EB	1	and "	WE		811	NB		1111-1	SB		
HCM Control Delay, s	21			58.			0			0		
HCM LOS	С			F								
Minor Lane/Major Mvmt	NBL	NBT	NBRI	EBLn1WBLn	SBL	SBT	SBR	13-11	10-510		5	1.0
Capacity (veh/h)	280	-	-	236 104			-	_				
HCM Lane V/C Ratio	-	-		0.046 0.362			A 1					
HCM Control Delay (s)	0	-	-	21 58.		-						
HCM Lane LOS	A		-	C F								
HCM 95th %tile Q(veh)	0		-	0.1 1.4								

	۶	-	7	4	+	*	1	†	1	4	Ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	₽		۲	¢Î		ሻ	∱ ⊅		ሻ	≜ ⊅	
Volume (veh/h)	85	158	124	402	130	156	160	2302	444	187	1270	43
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1881	1881	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	91	170	133	432	140	168	172	2475	477	201	1366	46
Adj No. of Lanes	1	1	0	1	1	0	1	2	0	1	2	0
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	2	2	2	1	1	1	2	2	2	2	2	2
Cap, veh/h	150	121	95	254	150	179	271	1638	306	149	1851	62
Arrive On Green	0.04	0.13	0.12	0.11	0.19	0.18	0.14	1.00	1.00	0.05	0.53	0.52
Sat Flow, veh/h	1774	970	759	1792	780	936	1774	2978	556	1774	3494	118
Grp Volume(v), veh/h	91	0	303	432	0	308	172	1438	1514	201	691	721
Grp Sat Flow(s),veh/h/ln	1774	0	1729	1792	0	1716	1774	1770	1765	1774	1770	1842
Q Serve(g_s), s	5.0	0.0	15.0	13.0	0.0	21.2	5.3	0.0	66.0	6.0	36.1	36.3
Cycle Q Clear(g_c), s	5.0	0.0	15.0	13.0	0.0	21.2	5.3	0.0	66.0	6.0	36.1	36.3
Prop In Lane	1.00		0.44	1.00		0.55	1.00		0.32	1.00		0.06
Lane Grp Cap(c), veh/h	150	0	216	254	0	329	271	973	971	149	938	976
V/C Ratio(X) 入	0.61	0.00	1.40	1.70	0.00	0.94	0.64	1.48	1.56	1.35	0.74	0.74
Avail Cap(c_a), veh/h	150	0	216	254	0	329	309	973	971	149	938	976
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	45.6	0.0	52.7	42.0	0.0	48.1	18.6	0.0	0.0	35.4	21.8	21.8
Incr Delay (d2), s/veh	6.9	0.0	206.4	331.4	0.0	33.5	3.5	220.5	257.0	195.9	5.2	5.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(-26165%),veh/In		0.0	19.5	25.4	0.0	13.2	3.0	59.6	69.3	13.0	19.0	19.8
LnGrp Delay(d),s/veh	52.5	0.0	259.1	373.5	0.0	81.5	22.1	220.5	257.0	231.3	26.9	26.8
LnGrp LOS	D		F	F		F	С	F	F	F	С	С
Approach Vol, veh/h		394			740			3124			1613	
Approach Delay, s/veh		211.4			252.0			227.3			52.3	
Approach LOS		F			F			F			D	
Timer	1	2	3	4	5	6	7	8	Contener)	No. Selling	Nella Yak	1
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	11.0	71.0	18.0	20.0	13.4	68.6	10.0	28.0				
Change Period (Y+Rc), s	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0				
Max Green Setting (Gmax), s	5.0	65.0	12.0	14.0	10.0	60.0	4.0	22.0				
Max Q Clear Time (g_c+l1), s	8.0	68.0	15.0	17.0	7.3	38.3	7.0	23.2				
Green Ext Time (p_c), s	0.0	0.0	0.0	0.0	0.1	21.6	0.0	0.0				
Intersection Summary			a literation						N. C. S.	13351	NO. AN	
HCM 2010 Ctrl Delay			181.2		10.197	A. The	1430	133.84	and the			174.5
HCM 2010 LOS			F									

	۶	-+	7	-	+	×.	1	1	1	L.	4	Ŧ
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT
Lane Configurations	٦	î.		ሻ	1 +		a la	∱ ₽			A	- † Þ
Volume (veh/h)	5	2	8	96	0	18	35	3070	29	3	21	1842
Number	7	4	14	3	8	18	5	2	12		1	6
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0		0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1900	1863	1863	1900		1863	1863
Adj Flow Rate, veh/h	5	2	9	103	0	19	38	3301	31		23	1981
Adj No. of Lanes	1	1	0	1	1	0	1	2	0		1	2
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93		0.93	0.93
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2		2	2
Cap, veh/h	177	28	127	185	0	151	236	2890	27		60	2920
Arrive On Green	0.10	0.10	0.10	0.10	0.00	0.10	0.80	0.80	0.80		1.00	1.00
Sat Flow, veh/h	1388	296	1332	1398	0	1583	218	3593	34		56	3630
Grp Volume(v), veh/h	5	0	11	103	0	19	38	1623	1709		23	966
Grp Sat Flow(s), veh/h/ln	1388	0	1628	1398	Ő	1583	218	1770	1857		56	1770
Q Serve(g_s), s	0.4	0.0	0.7	8.7	0.0	1.3	4.9	96.5	96.5		0.0	0.0
Cycle Q Clear(g_c), s	1.7	0.0	0.7	9.4	0.0	1.3	4.9	96.5	96.5		96.5	0.0
Prop In Lane	1.00	0.0	0.82	1.00	0.0	1.00	1.00	00.0	0.02		1.00	0.0
Lane Grp Cap(c), veh/h	177	0	156	185	0	151	236	1424	1494		60	1424
	0.03	0.00	0.07	0.56	0.00	0.13	0.16	1.14	1.14		0.38	0.68
V/C Ratio(X) \triangle Avail Cap(c_a), veh/h	230	0.00	217	238	0.00	211	236	1424	1494		60	1424
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		2.00	2.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00		1.00	1.00
	50.5	0.00	49.4	53.7	0.00	49.7	2.8	11.7	11.7		48.3	0.0
Uniform Delay (d), s/veh	0.1		49.4	2.6	0.0	49.7	1.5	72.1	73.3		17.5	2.6
Incr Delay (d2), s/veh		0.0	0.2	0.0	0.0	0.4	0.0	0.0	0.0		0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0				0.6	0.0	74.4	78.5		1.1	1.0
%ile BackOfQ(-26165%),veh/In	0.2	0.0	0.3	3.5	0.0		0.4 4.2	83.9	85.0		65.8	2.6
LnGrp Delay(d),s/veh	50.5	0.0	49.6	56.3	0.0	50.0	4.2 A	65.9 F	65.0 F		05.8 E	2.0 A
LnGrp LOS	D	10	D	E	100	D	A			Martin Martin	Steffini 🖵 🖓	
Approach Vol, veh/h		16			122			3370				2005
Approach Delay, s/veh		49.9			55.3			83.5				3.3
Approach LOS		D			E			F				A
Timer	1	2	3	4	5	6	7	8	in Pasti			
Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		102.5		17.5		102.5		17.5				
Change Period (Y+Rc), s		6.0		6.0		6.0		6.0				
Max Green Setting (Gmax), s		92.0		16.0		92.0		16.0				
Max Q Clear Time (g_c+l1), s		98.5		3.7		98.5		11.4				
Green Ext Time (p_c), s		0.0		0.3		0.0		0.2				
Intersection Summary			X 2 5						and all	and the second		a star
HCM 2010 Ctrl Delay		Sector 2	53.6	1 6. 5			le faite		17 AVES		1.1.1.1	
HCM 2010 LOS			D									
Notes	1											

į

2036 PM Peak Hour Full Build

Intersection	2.01 50		11210	ENGLAS	110	1	and the second second		1 Star	A. ALL MA		18
Int Delay, s/veh	8.2											
Movement	EBI	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	2		70	39	559	26	83	0	48	25		21
Vol, veh/h Conflicting Peds, #/hr) 0	10.0	0	009	0	0	0	40	0		
Sign Control	Free			Free	Free		Stop	Stop		Stop		-
RT Channelized	FIE		Alexan	-	-		otop -	otop -			and the rest of the	None
Storage Length	17	5 -		175	-		0	-		0		
Veh in Median Storage, #		- 0	-		0	-		0	/+		0	-
Grade, %		- 0	1 I		0	-		0	-		0	
Peak Hour Factor	93	3 93	93	93	93	93	93	93	93	93	93	93
Heavy Vehicles, %		1 1	1	1	1	1	0	0	0	0	0	0
Mymt Flow	2	7 560	75	42	601	28	89	0	52	27	1	23

Major/Minor	Major1	the		Major2	111421		Minor1	1 310	Tie - de	Minor2	-9/12/14	12
Conflicting Flow All	631	0	0	635	0	0	1365	1367	598	1378	1390	618
Stage 1		-	-	-	-	-	652	652	-	701	701	-
Stage 2		-			100		713	715	-	677	689	+
Critical Hdwy	4.11	-	-	4.11	+	-	7.1	6.5	6.2	7.1	6.5	6.2
Critical Hdwy Stg 1	-				+	-	6.1	5.5	-	6.1	5.5	-
Critical Hdwy Stg 2		-	-		-	-	6.1	5.5		6.1	5.5	-
Follow-up Hdwy	2.209		-	2.209	-	-	3.5	4	3.3	3.5	4	3.3
Pot Cap-1 Maneuver	956	-	-	953	-	-	126	148	506	123	144	493
Stage 1	19.4	-	-		-		460	467	- 1	433	444	-
Stage 2	-	-	-		-		426	438	-	446	450	-
Platoon blocked, %		-	-		-	14						
Mov Cap-1 Maneuver	955	-	-	953		-	113	137	506	104	134	492
Mov Cap-2 Maneuver		-			'		113	137	-	104	134	
Stage 1		+	-	-	-	-	447	454		420	424	-
Stage 2			-	÷	7		387	418		389	437	-
Approach	EB	119	all mills	WB	1.4.		NB	17.13		SB	BRE!	
HCM Control Delay, s	0.4			0.6			71.9			33.7		
HCM LOS	014						F			D		

Minor Lane/Major Mvmt	154	NBLn1	NBLn2	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1	SBLn2	15 10	NE L	I Trank
Capacity (veh/h)		113	506	955	-	14	953			104	439			
HCM Lane V/C Ratio	Δ	0.79	0.102	0.028	.0 +		0.044	-		0.258	0.054			
HCM Control Delay (s)		106	12.9	8.9	-	-	9			51.3	13.7			
HCM Lane LOS		F	В	А	-	-	A	÷	arrent .	F	В			
HCM 95th %tile Q(veh)		4.5	0.3	0.1	-	-	0.1			1	0.2			

Seldom Seen Acres Senior Living 2036 PM Peak Hour, Full Build

Movement EBL EBR NBL NBT SBT SBR Lane Configurations 1 0		۶	~	-	1	Ļ	4		
Lane Configurations $\mathbf{\hat{h}}$ $\mathbf{\hat{r}}$ $\mathbf{\hat{r}$ $\mathbf{\hat{r}}$ $\hat{$	Movement	EBL	EBR	NBL	NBT	SBT	SBR	1. 2. 2. 2. 2.	T
Volume (veh/h) 196 348 342 852 545 195 Number 7 14 5 2 6 16 Initial Q (Qb), veh 0 0 0 0 0 0 Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 1.00 Adj Sat Flow, veh/h/ln 1863 1863 1863 1863 1864 1900 Adj Sat Flow, veh/h/ln 1863 1863 1863 1864 1900 Adj No. of Lanes 1 1 1 1 0 Peak Hour Factor 0.93 0.93 0.93 0.93 0.93 Percent Heavy Veh,% 2 2 2 3 3 Cap, veh/h 335 299 360 1263 879 315 Arrive On Green 0.19 0.18 0.68 0.68 0.68 5 Grp Volume(v), veh/h 211 374 368 916 0 796 5 Grp Sat Flow, veh/h 1774 1583 679 1863				and the second se					Ī
Number 7 14 5 2 6 16 Initial Q (Qb), veh 0 0 0 0 0 0 Ped-Bike Adj(A_pDT) 1.00 1.00 1.00 1.00 1.00 1.00 Adj Sat Flow, veh/h 1.863 1863 1863 1863 1853 1853 1.00 Adj Skt Flow, veh/h/h 211 374 368 916 586 210 Adj No. of Lanes 1 1 1 1 0 9 Percent Heavy Veh, % 2 2 2 3 3 Cap. veh/h 335 299 360 1263 879 315 Arrive On Green 0.19 0.18 0.68							195		
Initial Q (Qb), veh 0 0 0 0 0 0 Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Adj Sat Flow, veh/h/ln 1863 1863 1863 1864 916 586 210 Adj No. of Lanes 1 1 1 1 0 92 2 2 3 3 Cap, veh/h 335 299 360 1263 879 315 Arrive On Green 0.19 0.68 0.68 0.68 0.68 Sat Flow, veh/h 1774 1583 679 1863 1298 465 Grp Volume(v), veh/h 211 374 368 916 0 796 Grp Sat Flow(s), veh/h/ln 1774 1583 679 1863 1298 465 Grp Volume(v), veh/h 211 374 368 916 0 796 Grap Sat Flow(s), veh/h 1774 1583 679 1863									
Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 Adj Sat Flow, veh/h/ln 1863 1863 1863 1863 1845 1900 Adj Sat Flow, veh/h/ln 1863 1863 1863 1863 1845 1900 Adj No. of Lanes 1 1 1 1 0 0 Peak Hour Factor 0.93 0.93 0.93 0.93 0.93 0.93 Percent Heavy Veh, % 2 2 2 3 3 3 Arrive On Green 0.19 0.19 0.68 0.68 0.68 0.68 Sat Flow, veh/h 1774 1583 679 1863 0 766 Grp Sat Flow(s), veh/h/h 1774 1583 679 1863 0 1763 Q Serve(g_s), s 9.9 17.0 37.1 28.1 0.0 23.9 Cycle Q Clear(g_c), s 9.9 17.0 61.0 28.1 0.0 1195 V/C Ratio(X) a 0.63									
Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Adj Sat Flow, veh/h/ln 1863 1863 1863 1863 1845 1900 Adj Flow Rate, veh/h 211 374 368 916 586 210 Adj No. of Lanes 1 1 1 1 1 0 Peak Hour Factor 0.93 0.93 0.93 0.93 0.93 Percent Heavy Veh, % 2 2 2 3 3 Cap, veh/h 335 299 360 1263 879 315 Arrive On Green 0.19 0.18 0.68 0.68 0.68 3 Grp Volume(v), veh/h 1711 374 368 916 0 796 Grp Sat Flow(s), veh/h/n 1774 1583 679 1863 0 1763 Q Serve(g_s), s 9.9 17.0 61.0 28.1 0.0 23.9 Prop In Lane 1.00 1.00 1.00 0.067 Avail Cap(c_a), veh/h 335 299 360 1263									
Adj Sat Flow, veh/h/ln 1863 1863 1863 1863 1845 1900 Adj Flow Rate, veh/h 211 374 368 916 586 210 Adj No. of Lanes 1 1 1 1 1 0 Peak Hour Factor 0.93 0.93 0.93 0.93 0.93 0.93 Percent Heavy Veh, % 2 2 2 3 3 Cap, veh/h 335 299 360 1263 879 315 Arrive On Green 0.19 0.19 0.68 0.68 0.68 0.68 Sat Flow, veh/h 1774 1583 679 1863 1298 465 Grp Volume(v), veh/h 211 374 368 916 0 796 Grs Sat Flow(s), veh/h 1774 1583 679 1863 0 1763 Q Serve(g_s), s 9.9 17.0 61.0 28.1 0.0 23.9 Prop In Lane 1.00 1.00 1.00 1.00 1.00 1.00 1.00 V/C Ratio(X					1.00	1.00			
Adj Flow Rate, veh/h 211 374 368 916 586 210 Adj No. of Lanes 1 1 1 1 1 0 Peak Hour Factor 0.93 0.93 0.93 0.93 0.93 0.93 Percent Heavy Veh, % 2 2 2 3 3 Cap, veh/h 335 299 360 1263 879 315 Arrive On Green 0.19 0.19 0.68 0.68 0.68 565 Grp Volume(v), veh/h 111 374 368 916 0 796 Grp Sat Flow(s), veh/h 1774 1583 679 1863 0 1763 Q Serve(g_s), s 9.9 17.0 37.1 28.1 0.0 23.9 Cycle Q Clear(g_c), s 9.9 17.0 61.0 28.1 0.0 23.9 Prop In Lane 1.00 1.00 1.00 0.00 0.67 4.063 1.25 1.02 0.73 0.00 0.67 Avail Cap(c_a), veh/h 335 299 360 1263									
Adj No. of Lanes 1 1 1 1 1 1 1 0 Peak Hour Factor 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 Percent Heavy Veh, % 2 2 2 2 3 3 Cap, veh/h 335 299 360 1263 879 315 Arrive On Green 0.19 0.19 0.68 0.68 0.68 0.68 Sat Flow, veh/h 1774 1583 679 1863 1298 465 Grp Volume(v), veh/h 211 374 368 916 0 796 Grp Sat Flow(s), veh/h/n 1774 1583 679 1863 0 1763 Q Serve(g_s), s 9.9 17.0 37.1 28.1 0.0 23.9 Cycle Q Clear(g_c), s 9.9 17.0 1.00 1.00 23.9 1195 V/C Ratio(X) ▲ 0.63 1.25 1.02 0.73 0.00 0.67 Avail Cap(c_a), veh/h 335 299 360 <t< td=""><td>and the second se</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	and the second se								
Peak Hour Factor 0.93 0.93 0.93 0.93 0.93 0.93 Percent Heavy Veh, % 2 2 2 3 3 Cap, veh/h 335 299 360 1263 879 315 Arrive On Green 0.19 0.19 0.68 0.68 0.68 0.68 Sat Flow, veh/h 1774 1583 679 1863 0 796 Grp Volume(v), veh/h 211 374 368 916 0 796 Grp Sat Flow(s), veh/h/ln 1774 1583 679 1863 0 1763 Q Serve(g.s), s 9.9 17.0 37.1 28.1 0.0 23.9 Prop In Lane 1.00 1.00 0 0 24.1 29 360 1263 0 1195 V/C Ratio(X) \bigstar 0.63 1.25 1.02 0.73 0.00 0.67 Avail Cap(c_a), veh/h 335 299 360 1263 0 1195 V/C Ratio(X) \bigstar 0.63 1.25 1.02									
Percent Heavy Veh, % 2 2 2 2 3 3 Cap, veh/h 335 299 360 1263 879 315 Arrive On Green 0.19 0.19 0.68 0.68 0.68 0.68 Sat Flow, veh/h 1774 1583 679 1863 1298 465 Grp Volume(v), veh/h 211 374 368 916 0 796 Grp Sat Flow(s), veh/h/ln 1774 1583 679 1863 0 1763 Q Serve(g_s), s 9.9 17.0 37.1 28.1 0.0 23.9 Cycle Q Clear(g_c), s 9.9 17.0 61.0 28.1 0.0 23.9 V/C Ratio(X) \bigstar 0.63 1.25 1.02 0.73 0.00 0.67 Avail Cap(c_a), veh/h 335 299 360 1263 0 1195 V/C Ratio(X) \bigstar 0.63 1.25 1.02 0.73 0.00 0.67 Avail Cap(c_a), veh/h 335 299 360 1263 0 1									
Cap, veh/h 335 299 360 1263 879 315 Arrive On Green 0.19 0.19 0.68 0.68 0.68 0.68 Sat Flow, veh/h 1774 1583 679 1863 1298 465 Grp Volume(v), veh/h 211 374 368 916 0 796 Grp Sat Flow(s), veh/h 1774 1583 679 1863 0 1763 Q Serve(g_s), s 9.9 17.0 37.1 28.1 0.0 23.9 Cycle Q Clear(g_c), s 9.9 17.0 61.0 28.1 0.0 23.9 Prop In Lane 1.00 1.00 1.00 0.63 1195 V/C Ratio(X) \bigstar 0.63 1.25 1.02 0.73 0.00 0.67 Avail Cap(c_a), veh/h 335 299 360 1263 1195 1195 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d2), s/veh 3.7 137.4 53.0 2.1 0.0 12.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Arrive On Green0.190.190.680.680.680.68Sat Flow, veh/h1774158367918631298465Grp Volume(v), veh/h2113743689160796Grp Sat Flow(s), veh/h/ln17741583679186301763Q Serve(g_s), s9.917.037.128.10.023.9Cycle Q Clear(g_c), s9.917.061.028.10.023.9Prop In Lane1.001.001.000.26Lane Grp Cap(c), veh/h335299360126301195V/C Ratio(X) \bigstar 0.631.251.020.730.000.67Avail Cap(c_a), veh/h335299360126301195HCM Platoon Ratio1.001.001.001.001.001.00Upstream Filter(I)1.001.001.001.001.001.00Uniform Delay (d), s/veh37.3173.983.611.30.09.9LnGrp Delay(d), s/veh37.3173.983.611.30.09.9LnGrp LOSDFFBAApproach Uol, veh/h5851284796Approach LOSFCA7Timer12345678Assigned Phs24666666Phyroach LOSF67.0 <td>the set of the set of</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.1.1</td>	the set of								1.1.1
Sat Flow, veh/h1774158367918631298465Grp Volume(v), veh/h2113743689160796Grp Sat Flow(s), veh/h/ln17741583679186301763Q Serve(g_s), s9.917.037.128.10.023.9Cycle Q Clear(g_c), s9.917.061.028.10.023.9Prop In Lane1.001.000.26Lane Grp Cap(c), veh/h335299360126301195V/C Ratio(X) λ 0.631.251.020.730.000.67Avail Cap(c_a), veh/h335299360126301195HCM Platoon Ratio1.001.001.001.001.001.00Upstream Filter(I)1.001.001.001.001.001.00Uniform Delay (d), s/veh33.636.530.69.20.08.5Incr Delay (d2), s/veh3.7137.453.02.10.01.4Initial Q Delay(d3),s/veh37.3173.983.611.30.09.9LnGrp LOSDFFBAApproach Vol, veh/h5851284796Approach LOSFCA7Timer12345678Assigned Phs246666666Proach LOSFC<									
Grp Volume(v), veh/h 211 374 368 916 0 796 Grp Sat Flow(s), veh/h/ln 1774 1583 679 1863 0 1763 Q Serve(g_s), s 9.9 17.0 37.1 28.1 0.0 23.9 Cycle Q Clear(g_c), s 9.9 17.0 61.0 28.1 0.0 23.9 Prop In Lane 1.00 1.00 1.00 0.26 1195 1195 V/C Ratio(X)									
Grp Sat Flow(s), veh/h/ln 1774 1583 679 1863 0 1763 Q Serve(g_s), s 9.9 17.0 37.1 28.1 0.0 23.9 Cycle Q Clear(g_c), s 9.9 17.0 61.0 28.1 0.0 23.9 Prop In Lane 1.00 1.00 1.00 0.26 Lane Grp Cap(c), veh/h 335 299 360 1263 0 1195 V/C Ratio(X) λ 0.63 1.25 1.02 0.73 0.00 0.67 Avail Cap(c_a), veh/h 335 299 360 1263 0 1195 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 33.6 36.5 30.6 9.2 0.0 8.5 Incr Delay (d2), s/veh 3.7 137.4 53.0 2.1 0.0 1.4 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(-26165%), veh/ln 5.2 18.8 14.2 15.0 0.0 12									
Q Serve(g_s), s 9.9 17.0 37.1 28.1 0.0 23.9 Cycle Q Clear(g_c), s 9.9 17.0 61.0 28.1 0.0 23.9 Prop In Lane 1.00 1.00 1.00 0.26 Lane Grp Cap(c), veh/h 335 299 360 1263 0 1195 V/C Ratio(X) \bigstar 0.63 1.25 1.02 0.73 0.00 0.67 Avail Cap(c_a), veh/h 335 299 360 1263 0 1195 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 3.6 36.5 30.6 9.2 0.0 8.5 Incr Delay (d2), s/veh 3.7 137.4 53.0 2.1 0.0 1.4 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 LnGrp Delay(d), s/veh 37.3 173.9 83.6 11.3 0.0 9.9									
Cycle Q Clear(g_c), s 9.9 17.0 61.0 28.1 0.0 23.9 Prop In Lane 1.00 1.00 1.00 0.26 Lane Grp Cap(c), veh/h 335 299 360 1263 0 1195 V/C Ratio(X) $ abla$ 0.63 1.25 1.02 0.73 0.00 0.67 Avail Cap(c_a), veh/h 335 299 360 1263 0 1195 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 33.6 36.5 30.6 9.2 0.0 8.5 Incr Delay (d2), s/veh 3.7 137.4 53.0 2.1 0.0 1.4 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 12.0 LnGrp Delay(d), s/veh 37.3 173.9 83.6 11.3 0.0 9.9 LnGrp LOS D F F B A A									
Prop In Lane1.001.001.000.26Lane Grp Cap(c), veh/h335299360126301195V/C Ratio(X) \blacktriangle 0.631.251.020.730.000.67Avail Cap(c_a), veh/h335299360126301195HCM Platoon Ratio1.001.001.001.001.001.00Jpstream Filter(I)1.001.001.001.001.00Jufferm Delay (d), s/veh33.636.530.69.20.08.5ncr Delay (d2), s/veh3.7137.453.02.10.01.4nitial Q Delay(d3), s/veh0.00.00.00.00.00.0%ile BackOfQ(-26165%), veh/ln5.218.814.215.00.012.0_nGrp Delay(d), s/veh37.3173.983.611.30.09.9_nGrp LOSDFFBAApproach Vol, veh/h5851284796Approach LOSFCAFimer123456Assigned Phs246Phs Duration (G+Y+Rc), s67.023.067.067.0Change Period (Y+Rc), s6.06.06.06.0									
Lane Grp Cap(c), veh/h 335 299 360 1263 0 1195 V/C Ratio(X)					2011	0.0			
V/C Ratio(X) \bigstar 0.63 1.25 1.02 0.73 0.00 0.67 Avail Cap(c_a), veh/h 335 299 360 1263 0 1195 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 33.6 36.5 30.6 9.2 0.0 8.5 Incr Delay (d2), s/veh 3.7 137.4 53.0 2.1 0.0 1.4 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Kile BackOfQ(-26165%), veh/ln 5.2 18.8 14.2 15.0 0.0 12.0 LnGrp Delay(d), s/veh 37.3 173.9 83.6 11.3 0.0 9.9 LnGrp LOS D F B A Approach LOS F C A Timer 1 2 3 4 5 67.0 23.0 67.0 </td <td></td> <td></td> <td></td> <td></td> <td>1263</td> <td>0</td> <td></td> <td></td> <td></td>					1263	0			
Avail Cap(c_a), veh/h335299360126301195HCM Platoon Ratio1.001.001.001.001.001.001.00Upstream Filter(I)1.001.001.001.000.001.00Uniform Delay (d), s/veh33.636.530.69.20.08.5Incr Delay (d2), s/veh3.7137.453.02.10.01.4Initial Q Delay(d3), s/veh0.00.00.00.00.00.0%ile BackOfQ(-26165%), veh/ln5.218.814.215.00.012.0LnGrp Delay(d), s/veh37.3173.983.611.30.09.9LnGrp LOSDFFBAApproach Vol, veh/h5851284796Approach LOSFCATimer12345678Assigned Phs246Phs Duration (G+Y+Rc), s67.023.067.06.06.0	1 111								
HCM Platoon Ratio1.001.001.001.001.001.00Upstream Filter(I)1.001.001.001.000.001.00Uniform Delay (d), s/veh33.636.530.69.20.08.5Incr Delay (d2), s/veh3.7137.453.02.10.01.4Initial Q Delay(d3), s/veh0.00.00.00.00.00.0%ile BackOfQ(-26165%), veh/ln5.218.814.215.00.012.0LnGrp Delay(d), s/veh37.3173.983.611.30.09.9LnGrp LOSDFFBAApproach Vol, veh/h5851284796Approach LOSFCATimer12345678Assigned Phs246Phs Duration (G+Y+Rc), s67.023.067.06.06.0									
Upstream Filter(I) 1.00 1.4 Initial Q Delay(d2), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.00 1.4 Initial Q Delay(d), s/veh 37.3 173.9 83.6 11.3 0.0 9.9 InGrp Delay(d), s/veh 124.6 32.0 9.9 Approach LOS F C									
Uniform Delay (d), s/veh 33.6 36.5 30.6 9.2 0.0 8.5 Incr Delay (d2), s/veh 3.7 137.4 53.0 2.1 0.0 1.4 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(-26165%), veh/ln 5.2 18.8 14.2 15.0 0.0 12.0 LnGrp Delay(d), s/veh 37.3 173.9 83.6 11.3 0.0 9.9 LnGrp LOS D F F B A Approach Vol, veh/h 585 1284 796 Approach LOS F C A Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 6 6 70 8 Assigned Phs 2 4 6 6 70 8 Assigned Phs 2 4 6 6 6 6 6 Phs Duration (G+Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Incr Delay (d2), s/veh3.7137.453.02.10.01.4Initial Q Delay(d3), s/veh0.00.00.00.00.00.0%ile BackOfQ(-26165%), veh/ln5.218.814.215.00.012.0LnGrp Delay(d), s/veh37.3173.983.611.30.09.9LnGrp LOSDFFBAApproach Vol, veh/h5851284796Approach Delay, s/veh124.632.09.9Approach LOSFCATimer12345Assigned Phs246Phs Duration (G+Y+Rc), s6.06.06.0									
Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(-26165%),veh/ln 5.2 18.8 14.2 15.0 0.0 12.0 LnGrp Delay(d),s/veh 37.3 173.9 83.6 11.3 0.0 9.9 LnGrp LOS D F F B A Approach Vol, veh/h 585 1284 796 Approach Delay, s/veh 124.6 32.0 9.9 Approach LOS F C A Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 6 6 6 0 6.0 6 Phs Duration (G+Y+Rc), s 6.0 6.0 6.0 6.0 6 6 6									
%ile BackOfQ(-26165%),veh/ln 5.2 18.8 14.2 15.0 0.0 12.0 LnGrp Delay(d),s/veh 37.3 173.9 83.6 11.3 0.0 9.9 LnGrp LOS D F F B A Approach Vol, veh/h 585 1284 796 Approach Delay, s/veh 124.6 32.0 9.9 Approach LOS F C A Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 6 6 6 7.0 6 Phs Duration (G+Y+Rc), s 6.0 6.0 6.0 6.0 6.0									
LnGrp Delay(d),s/veh 37.3 173.9 83.6 11.3 0.0 9.9 LnGrp LOS D F F B A Approach Vol, veh/h 585 1284 796 Approach Delay, s/veh 124.6 32.0 9.9 Approach LOS F C A Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 6 6 7 8 Assigned Phs 2 4 6 7 8 Change Period (Y+Rc), s 6.0 6.0 6.0 6.0									
LnGrp LOS D F B A Approach Vol, veh/h 585 1284 796 Approach Delay, s/veh 124.6 32.0 9.9 Approach LOS F C A Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 6 6 7 8 Change Period (Y+Rc), s 67.0 23.0 67.0 6 6									
Approach Vol, veh/h 585 1284 796 Approach Delay, s/veh 124.6 32.0 9.9 Approach LOS F C A Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 6 6 6 7 8 Change Period (Y+Rc), s 67.0 23.0 67.0 6 7 8						STATES I			
Approach Delay, s/veh 124.6 32.0 9.9 Approach LOS F C A Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 6 6 7 8 Phs Duration (G+Y+Rc), s 67.0 23.0 67.0 6 7 8 Change Period (Y+Rc), s 6.0 6.0 6.0 6 6 6						796			
Approach LOS F C A Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 6 6 7 8 Phs Duration (G+Y+Rc), s 67.0 23.0 67.0 6 6 Change Period (Y+Rc), s 6.0 6.0 6.0 6 6									
Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 6 6 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 8 7 8 7 7 8 7				6 a l de chi					
Assigned Phs 2 4 6 Phs Duration (G+Y+Rc), s 67.0 23.0 67.0 Change Period (Y+Rc), s 6.0 6.0 6.0		1	2	3	4	5	6	7	8
Phs Duration (G+Y+Rc), s 67.0 23.0 67.0 Change Period (Y+Rc), s 6.0 6.0 6.0			and the second se		4		6		
Change Period (Y+Rc), s 6.0 6.0 6.0									
	Max Green Setting (Gmax), s		61.0		17.0		61.0		
Max Q Clear Time (g_c+l1), s 63.0 19.0 25.9									
Green Ext Time (p_c), s 0.0 0.0 22.8									
Intersection Summary	Intersection Summary		A Provinsi P						N. Series
HCM 2010 Ctrl Delay 45.8		100		45.8	C. State				
HCM 2010 LOS D	2 HOW VERTICAL								

	۶	-+	7	4	+	*	1	1	1	1	ţ	1			
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR			1.5 33
Lane Configurations	ሻካ	*	7	ካ	朴臣		ሻካ	- † †	1	ሻካ	- 44	1			
Volume (veh/h)	537	473	137	299	389	197	433	2314	228	520	1480	194			
Number	5	2	12	1	6	16	3	8	18	7	4	14			
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0			
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Adj Sat Flow, veh/h/ln	1863	1863	1863	1881	1881	1900	1863	1863	1863	1881	1881	1881			
Adj Flow Rate, veh/h	577	509	147	322	418	212	466	2488	245	559	1591	209			
Adj No. of Lanes	2	2	1	1	2	0	2	2	1	2	2	1			
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93			
Percent Heavy Veh, %	2	2	2	1	1	1	2	2	2	1	1	1			
Cap, veh/h	373	531	422	245	327	164	402	1652	871	348	1608	866			
Arrive On Green	0.11	0.15	0.15	0.10	0.14	0.13	0.12	0.47	0.46	0.10	0.45	0.44			
Sat Flow, veh/h	3442	3539	1583	1792	2306	1158	3442	3539	1583	3476	3574	1599	CE IS Display	And And	216
Grp Volume(v), veh/h	577	509	147	322	323	307	466	2488	245	559	1591	209			
Grp Sat Flow(s),veh/h/li		1770	1583	1792	1787	1677	1721	1770	1583	1738	1787	1599			
Q Serve(g_s), s	13.0	17.1	9.0	12.0	17.0	17.0	14.0	56.0	9.9	12.0	52.9	8.3			
Cycle Q Clear(g_c), s	13.0	17.1	9.0	12.0	17.0	17.0	14.0	56.0	9.9	12.0	52.9	8.3			
Prop In Lane	1.00		1.00	1.00		0.69	1.00		1.00	1.00		1.00			
Lane Grp Cap(c), veh/h		531	422	245	253	238	402	1652	871	348	1608	866			
V/C Ratio(X) √	1.55	0.96	0.35	1.32	1.28	1.29	1.16	1.51	0.28	1.61	0.99	0.24			
Avail Cap(c_a), veh/h	373	531	422	245	253	238	402	1652	871	348	1608	866			
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Uniform Delay (d), s/vel		50.6	35.6	43.2	51.5	51.8	53.0	32.0	14.4	54.0	32.7	14.5			
Incr Delay (d2), s/veh		28.9	0.5	167.8	150.9	159.4	96.5	231.1	0.8	286.8	20.0	0.7			
Initial Q Delay(d3),s/vel		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
%ile BackOfQ(-26165%			4.0	11.4	19.0	18.4	12.0	80.3	4.5	19.6	30.5	3.8			
LnGrp Delay(d),s/veh		79.5	36.1	211.0	202.4	211.2	149.5	263.1	15.2	340.8	52.7	15.2			
LnGrp LOS	F	Е	D	F	F	F	F	F	В	F	D	В			
Approach Vol, veh/h		1233			952			3199			2359				
Approach Delay, s/veh		183.5			208.2			227.5			117.7				
Approach LOS		F			F			F			F				
Timer	1	2	3	4	5	6	7	8						18 M. 18	
Assigned Phs	1	2	3	4	5	6	7	8							
Phs Duration (G+Y+Rc)	, \$8.0	23.0	20.0	59.0	19.0	22.0	18.0	61.0							
Change Period (Y+Rc),		6.0	7.0	6.0	7.0	6.0	7.0	6.0							
Max Green Setting (Gm		17.0	13.0	53.0	12.0	16.0	11.0	55.0							
Max Q Clear Time (g_c		19.1	16.0	54.9	15.0	19.0	14.0	58.0							
Green Ext Time (p_c), s		0.0	0.0	0.0	0.0	0.0	0.0	0.0							
Intersection Summary		NU ST		「中山」が		10 10 10 10 10 10 10 10 10 10 10 10 10 1						in the second			No.
HCM 2010 Ctrl Delay			184.7												
HCM 2010 LOS			F												

-	۶	-	\mathbf{F}	1	-	*	1	1	1	1	ŧ	4			
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		1270	
Lane Configurations		4		ሻ	₽		٦	ተኩ		ሻ	_ † ₽				
Volume (veh/h)	40	20	34	53	15	19	96	3094	138	33	1982	43			
Number	7	4	14	3	8	18	5	2	12	1	6	16			
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0			
Ped-Bike Adj(A_pbT)	0.99		0.99	0.99		0.98	1.00		1.00	1.00		1.00			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Adj Sat Flow, veh/h/ln	1900	1881	1900	1792	1792	1900	1863	1863	1900	1863	1863	1900			
Adj Flow Rate, veh/h	43	22	37	57	16	20	103	3327	148	35	2131	46			
Adj No. of Lanes	0	1	0	1	1	0	1	2	0	1	2	0			
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93			
Percent Heavy Veh, %	1	1	1	6	6	6	2	2	2	2	2	2			
Cap, veh/h	72	22	29	131	48	60	212	2906	128	60	2982	64			
Arrive On Green	0.07	0.07	0.07	0.07	0.07	0.07	0.84	0.84	0.83	1.00	1.00	1.00			
Sat Flow, veh/h	438	325	435	1280	718	897	180	3453	152	49	3543	76			
Grp Volume(v), veh/h	102	0	0	57	0	36	103	1693	1782	35	1061	1116			
Grp Sat Flow(s), veh/h/lr	1198	0	0	1280	0	1615	180	1770	1835	49	1770	1849			
Q Serve(g_s), s	5.4	0.0	0.0	0.0	0.0	2.6	25.4	101.0	101.0	0.0	0.0	0.0			
Cycle Q Clear(g_c), s	8.0	0.0	0.0	6.3	0.0	2.6	25.4	101.0	101.0	101.0	0.0	0.0			
Prop In Lane	0.42		0.36	1.00		0.56	1.00		0.08	1.00		0.04			
Lane Grp Cap(c), veh/h	123	0	0	131	0	108	212	1489	1545	60	1489	1556			
V/C Ratio(X) V	0.83	0.00	0.00	0.43	0.00	0.33	0.49	1.14	1.15	0.58	0.71	0.72			
Avail Cap(c_a), veh/h	123	0	0	131	0	108	212	1489	1545	60	1489	1556	2.11		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00			
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Uniform Delay (d), s/veh	n 57.4	0.0	0.0	55.2	0.0	53.5	3.5	9.5	9.5	50.5	0.0	0.0			
Incr Delay (d2), s/veh	36.3	0.0	0.0	2.3	0.0	1.8	7.8	70.3	77.0	35.3	2.9	2.9			
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
%ile BackOfQ(-26165%)),v ə h 6 ir	0.0	0.0	2.0	0.0	1.2	1.7	76.2	81.9	1.7	1.2	1.2			
LnGrp Delay(d),s/veh	93.7	0.0	0.0	57.5	0.0	55.3	11.3	79.8	86.5	85.8	2.9	2.9			
LnGrp LOS	F	1225		Е	123	E	В	F	F	F	Α	Α		1942	1.2
Approach Vol, veh/h		102			93			3578			2212				
Approach Delay, s/veh		93.7			56.6			81.2			4.2				
Approach LOS		F			Е			F			А				
Timer	1	2	3	4	5	6	7	8			11				
Assigned Phs		2		4		6		8							
Phs Duration (G+Y+Rc)	S	106.0		14.0		106.0		14.0							
Change Period (Y+Rc),		6.0		6.0		6.0		6.0							
Max Green Setting (Gm				8.0		100.0		8.0							
Max Q Clear Time (g_c-				10.0		103.0		8.3							
Green Ext Time (p_c), s		0.0		0.0		0.0		0.0							
Intersection Summary								C.S. Martin	Statis.	S. Can				N. S. Star	
HCM 2010 Ctrl Delay	and the	(Cardina	52.6	and the second											
HCM 2010 LOS			D												

0.9

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	0	0	10	0	.0	52	0	2899	117	0	1890	6
Conflicting Peds, #/hr	0	0	8	0	0	2	0	0	0	0	0	5
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None		-	None		-	None
Storage Length	-	-	0	-	-	0	-	-	210	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-		0	-		0	-
Grade, %	-	0	-	-	0	-		0	6	-	0	-
Peak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	0	0	0	2	2	2	2	2	2
Mvmt Flow	0	0	11	0	0	56	0	3117	126	0	2032	6
Major/Minor	Minor2	init	- 11/4-	Minor1	A SP	7.1	Major1	10.	3000	Major2	191	
Conflicting Flow All	3604	5162	1027	4143	5166	1566	2047	0	0	3119	0	0
Stage 1	2043	2043		3119	3119	-	-	-	-		-	-
Stage 2	1561	3119	-	1024	2047	-		-	-		-	-
Critical Hdwy	7.54	6.54	6.94	7.5	6.5	6.9	4.14		-	4.14	-	-
Critical Hdwy Stg 1	6.54	5.54	-	6.5	5.5	-	-	-	-	-		
Critical Hdwy Stg 2	6.54	5.54		6.5	5.5	-		-	-	-	-	
Follow-up Hdwy	3.52	4.02	3.32	3.5	4	3.3	2.22	+	-	2.22	-	
Pot Cap-1 Maneuver	2	0	232	1	0	102	271		-	101	÷	
Stage 1	58	98		12	27				-	-	-	-
Stage 2	117	26	-	256	100	-	-	-	-	-		-
Platoon blocked, %								-	+		-	-
Mov Cap-1 Maneuver	1	0	230	1	0	101	271		-	101		-
Mov Cap-2 Maneuver	1	0	-	1	0		11/5	-			-	-
Stage 1	58	97	-	12	27	-	-		-		-	-
Stage 2	52	26	-	244	99	•		•		-	-	
Approach	EB	10.5		WB			NB	aler a	26 723	SB	10000	0E.A
HCM Control Delay, s	21.4			77.9			0			0		
HCM LOS	С			F								
Minor Lane/Major Mvmt	NBL	NBT	NBRI	EBLn1WBLn1	SBL	SBT	SBR	19 50	100	201 - A.		
Capacity (veh/h)	271			230 101	101	-	-					
HCM Lane V/C Ratio		-	- 4	0.047 0.554	14		-					
HCM Control Delay (s)	0	-	-	21.4 77.9	0	-						
HCM Lane LOS	Ä	-	-	C F	A							
HCM 95th %tile Q(veh)	0		-	0.1 2.6	0	-	-					

	۶	-+	~	4	-	*	1	Ť	1	4	Ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)		ሻ	f)		۲	ተኩ		ሻ	† ⊅	
Volume (veh/h)	85	160	126	423	133	174	163	2322	466	197	1281	43
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1881	1881	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	91	172	135	455	143	187	175	2497	501	212	1377	46
Adj No. of Lanes	1	1	0	1	1	0	1	2	0	1	2	0
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	2	2	2	1	1	1	2	2	2	2	2	2
Cap, veh/h	134	153	120	194	142	186	269	1626	316	151	1850	62
Arrive On Green	0.04	0.16	0.15	0.08	0.19	0.18	0.14	1.00	1.00	0.05	0.53	0.52
Sat Flow, veh/h	1774	968	760	1792	741	969	1774	2957	574	1774	3495	117
Grp Volume(v), veh/h	91	0	307	455	0	330	175	1461	1537	212	696	727
Grp Sat Flow(s),veh/h/ln	1774	0	1729	1792	0	1710	1774	1770	1761	1774	1770	1842
Q Serve(g_s), s	5.0	0.0	19.0	9.0	0.0	23.0	5.4	0.0	62.5	6.0	36.7	36.8
Cycle Q Clear(g_c), s	5.0	0.0	19.0	9.0	0.0	23.0	5.4	0.0	62.5	6.0	36.7	36.8
Prop In Lane	1.00		0.44	1.00		0.57	1.00		0.33	1.00		0.06
Lane Grp Cap(c), veh/h	134	0	274	194	0	328	269	973	969	151	937	975
V/C Ratio(X)	0.68	0.00	1.12	2.34	0.00	1.01	0.65	1.50	1.59	1.40	0.74	0.75
Avail Cap(c_a), veh/h	134	0	274	194	0	328	291	973	969	151	937	975
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	42.5	0.0	50.7	43.1	0.0	48.8	19.0	0.0	0.0	34.9	21.9	22.0
Incr Delay (d2), s/veh	13.0	0.0	91.2	619.2	0.0	51.4	4.5	230.7	269.1	216.5	5.3	5.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(-26165%),veh/ln		0.0	16.0	33.4	0.0	15.5	3.2	62.4	72.4	14.1	19.2	20.0
LnGrp Delay(d),s/veh	55.5	0.0	141.9	662.2	0.0	100.2	23.6	230.7	269.1	251.4	27.3	27.2
LnGrp LOS	E		F	F		F	С	F	F	F	С	С
Approach Vol, veh/h	0	398			785			3173			1635	
Approach Delay, s/veh		122.1			426.0			237.9			56.3	
Approach LOS		F			F			F			E	
Timer	1	2	3	4	5	6	7	8				1023
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	11.0	71.0	14.0	24.0	13.5	68.5	10.0	28.0				
Change Period (Y+Rc), s	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0				
Max Green Setting (Gmax), s	5.0	65.0	8.0	18.0	9.0	61.0	4.0	22.0				
Max Q Clear Time (g_c+l1), s	8.0	64.5	11.0	21.0	7.4	38.8	7.0	25.0				
Green Ext Time (p_c), s	0.0	0.5	0.0	0.0	0.1	22.1	0.0	0.0				
Intersection Summary			and the second se		たい合い等相			Section 1			4544	
HCM 2010 Ctrl Delay			205.3									
HCM 2010 LOS			F									

	۶	-	*	4	+	*	1	Ť	1	4	4	ŧ
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT
Lane Configurations	ሻ	4		ሻ	eî.		Ā		7		2	† †
Volume (veh/h)	5	2	8	169	0	30	35	3096	55	3	37	1860
Number	7	4	14	3	8	18	5	2	12		1	6
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0		0	C
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1900	1863	1863	1863		1863	1863
Adj Flow Rate, veh/h	5	2	9	182	0	32	38	3329	59		40	2000
Adj No. of Lanes	1	1	0	1	1	0	1	2	1		1	2
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93		0.93	0.93
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2		2	2
Cap, veh/h	172	30	133	191	0	158	231	2831	1267		60	2904
Arrive On Green	0.10	0.10	0.10	0.10	0.00	0.10	1.00	1.00	1.00		1.00	1.00
Sat Flow, veh/h	1372	296	1332	1398	0	1583	214	3539	1583		53	3630
Grp Volume(v), veh/h	5	0	11	182	0	32	38	3329	59		40	975
Grp Sat Flow(s), veh/h/ln	1372	0	1628	1398	0	1583	214	1770	1583		53	1770
Q Serve(g_s), s	0.4	0.0	0.7	11.3	0.0	2.2	0.0	96.0	0.0		0.0	0.0
Cycle Q Clear(g_c), s	2.6	0.0	0.7	12.0	0.0	2.2	0.0	96.0	0.0		96.0	0.0
Prop In Lane	1.00	0.0	0.82	1.00	0.0	1.00	1.00	00.0	1.00		1.00	0.0
Lane Grp Cap(c), veh/h	172	0	163	191	0	158	231	2831	1267		60	1416
V/C Ratio(X)	0.03	0.00	0.07	0.95	0.00	0.20	0.16	1.18	0.05		0.67	0.69
Avail Cap(c_a), veh/h	172	0.00	163	191	0.00	158	231	2831	1267		60	1416
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.33	1.33	1.33		2.00	2.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00		1.00	1.00
Uniform Delay (d), s/veh	50.8	0.0	48.9	55.9	0.0	49.6	0.0	0.0	0.0		48.0	0.0
Incr Delay (d2), s/veh	0.1	0.0	0.2	51.2	0.0	0.6	1.5	83.1	0.0		45.9	2.8
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
%ile BackOfQ(-26165%),veh/In		0.0	0.3	8.7	0.0	1.0	0.0	32.7	0.0		2.1	1.1
LnGrp Delay(d),s/veh	50.9	0.0	49.1	107.1	0.0	50.2	1.5	83.1	0.0		93.9	2.8
LnGrp LOS	50.9 D	0.0	49.1 D	F	0.0	50.2 D	1.5 A	60.1 F	A		55.5 F	2.0 A
	0	16	U	10 D. 11	214	U	A	3426	A			2041
Approach Vol, veh/h								80.8				4.5
Approach Delay, s/veh		49.7			98.6 F			00.0 F				
Approach LOS	and the second first	D		in a state of the st			10.250 Million		2 - 10 - 10 - 10			А
Timer	1	2	3	4	5	6	7	8	They are the	A Strange Strange	A STATE	21111
Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		102.0		18.0		102.0		18.0				
Change Period (Y+Rc), s		6.0		6.0		6.0		6.0				
Max Green Setting (Gmax), s		96.0		12.0		96.0		12.0				
Max Q Clear Time (g_c+l1), s		98.0		4.6		98.0		14.0				
Green Ext Time (p_c), s		0.0	Strate Ch	0.4		0.0		0.0				2.20
Intersection Summary		A Martine S			EACH TO			10 8 2 1 5	1962	Statistics.	- Carton	
HCM 2010 Ctrl Delay			54.0									
HCM 2010 LOS			D									
Notes	Partie Hold	a state and and	Nenn 1898	1. 30. 1		ALCON ST	E SIL FEYS	a service	States 1 1	The line of	P. G.Mas	A STATE

Notes

User approved pedestrian interval to be less than phase max green.

	1				
Movement	SBR				
LareConfigurations					
Volume (veh/h)	1				
Number	16				
Initial Q (Qb), veh	0				
Ped-Bike Adj(A_pbT)	1.00				
Parking Bus, Adj	1.00				
Adj Sat Flow, veh/h/ln	1900				
Adj Flow Rate, veh/h	1				
Adj No. of Lanes	0				
Peak Hour Factor	0.93				
Percent Heavy Veh, %	2				
Cap, veh/h	1				
Arrive On Green	1.00				
Sat Flow, veh/h	2	A Start Start	(1) (1) (1) (1)	States and States	Star Helly
Grp Volume(v), veh/h	1026				
Grp Sat Flow(s),veh/h/ln	1862				
Q Serve(g_s), s	0.0				
Cycle Q Clear(g_c), s	0.0				
Prop In Lane	0.00				
Lane Grp Cap(c), veh/h	1490				
V/C Ratio(X)	0.69				
Avail Cap(c_a), veh/h	1490				
HCM Platoon Ratio	2.00				
Upstream Filter(I)	1.00				
Uniform Delay (d), s/veh	0.0				
Incr Delay (d2), s/veh	2.6				
Initial Q Delay(d3),s/veh	0.0				
%ile BackOfQ(-26165%),veh/In	1.1				
LnGrp Delay(d),s/veh	2.6				
LnGrp LOS	Α		ALL DADA	The fait of the second	Repairing the
Approach Vol, veh/h					
Approach Delay, s/veh					
Approach LOS					
Timer					
				a sound a conservation of the second second	and a state of the second